Home
Class 11
PHYSICS
What does d|vec(v)|//dt and |d vec(v)//d...

What does `d|vec(v)|//dt` and `|d vec(v)//dt|` represent ? Can these be equal ? Can. (a) `d|vec(v)|//dt = 0` while `|d vec(v)//dt| != 0` (b) `d|vec(v)|//dt != 0` while `|d vec(v)//dt| = 0`?

Text Solution

Verified by Experts

`d |vec(v)|//dt` represents time rate of change of speed as `|vec(v)| = v`, while `|d vec(v)//dt|` represents magnitude of acceleration. If the motion of a particle is accelerated translatroy (without change in direction)
as `vec(v) = |vec(v)| hat(n), (d vec(v))/(dt) = (d)/(dt) [|vec(v)| hat(n)]`
or `(d vec(v))/(dt) = hat(n) (d)/(dt) |vec(v)|` [as `hat(n)` constant]
or `|(d vec(v))/(dt)| = (d)/(dt) |vec(v)| (!= 0)`
However, if the motion is uniform translartory, both these will still be equal but zero .
(a) The given condition implies that:
`|d vec(v) //dt| !=`, i.e., |acc.| `!=0` while `d|vec(v)|//dt = 0`,
i.e., speed = constant
This actually is the case of uniform circular motion. In case of uniform circular motion
`|(d vec(v))/(dt)| = |vec(a)| = (v^(2))/(r) =` constt. `!= 0`
while `|vec(v)| =` constt. i.e., `(d)/(dt) |vec(v)| = 0`
(b) `|d vec(v)//dt| = 0` means `|vec(a)| = 0` means `|vec(a)| = 0`, i.e., `vec(a) = 0`
or `(d vec(v)//dt) = 0` or `vec(v)=` constt.
And when velocity `vec(v)` is constant speed will be constt.,
i.e., speed `= |vec(v)| =` constt. or `(d)/(dt) |vec(v)| = 0`
So, it is not possible to have `|(d vec(v))/(dt)| = 0` while `(d)/(dt) |vec(v)| != 0`
Promotional Banner

Topper's Solved these Questions

  • MOTION IN A STRAIGHT LINE

    GRB PUBLICATION|Exercise Problem|14 Videos
  • MOTION IN A STRAIGHT LINE

    GRB PUBLICATION|Exercise Problems and Practice|16 Videos
  • FRICTION AND CIRCULAR MOTION

    GRB PUBLICATION|Exercise Comprehension type|11 Videos
  • MOTION IN TWO AND THREE DIMENSIONS

    GRB PUBLICATION|Exercise All Questions|210 Videos

Similar Questions

Explore conceptually related problems

(a) What does |(dv)/(dt)| and (d|v|)/(dt) represent? (b) Can these be equal?

(i) What does |(dv)/(dt)| and (d|V|)/(dt) represent ? (ii) Can these be equal ? (iii) Can (d|V)/(dt)= 0 while |(dV)/(dt)ne0 ? (iv) Can (d|V|)/(dt)ne 0 while |(dv)/(dt)|=0 ?

vec(r)=2that(i)+3tvec(2)hat(j) . Find vec(v) and vec(a) where vec(v)=(dvec(r))/(dr) , vec(a)=(dvec(v))/(dt)

Two particles of masses m_(1) and m_(2) in projectile motion have velocities vec(v)_(1) and vec(v)_(2) , respectively , at time t = 0 . They collide at time t_(0) . Their velocities become vec(v')_(1) and vec(v')_(2) at time 2 t_(0) while still moving in air. The value of |(m_(1) vec(v')_(1) + m_(2) vec(v')_(2)) - (m_(1) vec(v)_(1) + m_(2) vec(v)_(2))|

Maxwell’s equation oint vec(E).vec(dl) = (d vec(B).vec(A))/dt is a statement of-

If a ,\ b represent the diagonals of a rhombus, then vec axx vec b= vec0 b. vec adot vec b=0 c. vec adot vec b=1 d. vec axx vec b= vec a

The equation (d^2y)/(dt^2)+b(dy)/(dt)+omega^2y=0 represents the equation of motion for a

The quantity int_(t_(1))^(t_(2)) vec(V) dt represents:

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec vdot vec a=0a n d vec vdot vec b=1a n d[ vec v vec a vec b]=1 is vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^) d. none of these

The vectors vec a and vec b are not perpendicular and vec c and vec d are two vectors satisfying : vec b""xxvec c""= vec b"" xxvec d"",vec a * vec d=0 . Then the vector vec d is equal to : (1) vec b-(( vec bdot vec c)/( vec adot vec d)) vec c (2) vec c+(( vec adot vec c)/( vec adot vec b)) vec b (3) vec b+(( vec bdot vec c)/( vec adot vec b)) vec c (4) vec c-(( vec adot vec c)/( vec adot vec b)) vec b