Calculate the angle of (a) `1^(@)` (degree) (b) 1' (minute of arc of are min) and (c ) 1''(secondof arc of arc sec) in radian. Use `360^@ =2 pi rad., 1^@ = 60'` and 1' = 60''.
Text Solution
Verified by Experts
(a) We have `360^(@)=2pi rad` `1^(@)=(pi//180) rad = 1.745xx10^(-2) rad` (b) `1^(@)=60'=1.745xx10^(-2) rad` `1'=2.908xx10^(-4) rad cong 2.91xx10^(-4) rad` (c) `1'=60''=2.908xx10^(-4) rad` `1''=4.847xx10^(-4) rad cong 4.85xx10^(-6) rad`
Topper's Solved these Questions
UNITS AND MEASUREMENT
NCERT|Exercise EXERCISE|33 Videos
UNITS AND MEASUREMENT
NCERT|Exercise QUESTION|1 Videos
THERMODYNAMICS
NCERT|Exercise EXERCISE|10 Videos
WAVES
NCERT|Exercise EXERCISE|27 Videos
Similar Questions
Explore conceptually related problems
Calculate the angle of (i) 1^(@) (degree) (ii) 1^(@) (minute of arc or arc minute) and (iii) 1^(@) (second of arc or arc sec) in radian.(Use 360^(@)=2pi rad , 1^(@) = 60^(@) and 1^(')=60^(@) and 1^(')=60^(''))
Calulate the angle of 1" (secondof arc or arc sec) in radian. (Use 360^(@)=2pi rad, 1^(@)=60'and1'=60 ")
The angle of 1' (minute of arc) in radian is nearly equal to
Find the value of : arc sin (1/2) + arc cos (1/2)
An arc subtended an angle 60^(@) at the center of c circle of radius 6 cm , then length of minor and major arc
Compute the integrals : int_(0)^(1) x "arc tan x dx
int ( "arc" sin x dx)/( sqrt( 1+ x)) .
A circular arc of length pi cm. Find angle subtended by it at the centre in radian and degree.
Knowledge Check
Calulate the angle of 1" (secondof arc or arc sec) in radian. (Use 360^(@)=2pi rad, 1^(@)=60'and1'=60 ")
A
`4.85xx10^(-6)`rad
B
`4.85xx10^(6)`rad
C
`4.85xx10^(5)`rad
D
`4.85xx10^(-5)`rad
The angle of 1' (minute of arc) in radian is nearly equal to
A
`2.91 x 10^-4 rad`
B
`4.85 x 10^-4 rad`
C
`4.80 x 10^-6 rad`
D
`1.75 x 10^-2 rad`
The angle of 1'(minute of arc) in radian is nearly equal to