Home
Class 11
PHYSICS
Find the relative error in Z, if Z=A^(4)...

Find the relative error in Z, if `Z=A^(4)B^(1//3)//CD^(3//2)`.

Text Solution

AI Generated Solution

To find the relative error in \( Z \) given the expression \( Z = \frac{A^4 B^{1/3}}{C D^{3/2}} \), we will use the concept of propagation of errors. The relative error in a quantity that is a function of multiple variables can be calculated using the following formula: \[ \frac{\Delta Z}{Z} = \sqrt{\left( \frac{\partial Z}{\partial A} \cdot \frac{\Delta A}{A} \right)^2 + \left( \frac{\partial Z}{\partial B} \cdot \frac{\Delta B}{B} \right)^2 + \left( \frac{\partial Z}{\partial C} \cdot \frac{\Delta C}{C} \right)^2 + \left( \frac{\partial Z}{\partial D} \cdot \frac{\Delta D}{D} \right)^2} \] Where: - \( \Delta Z \) is the absolute error in \( Z \) ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If Z=(A^(4)B^(1/3))/(CD^(3/2)) ,than relative error in Z (Delta Z)/(Z) is equal to (a) ((Delta A)/(A))^(4)+((Delta B)/(B))^(1/3)-((Delta C)/(C))-((Delta D)/(D))^(3/2) (b) 4((Delta A)/(A))+((1)/(3))((Delta B)/(B))+((Delta C)/(C))+((3)/(2))((Delta D)/(D)) (c) 4((Delta A)/(A))+(1)/(3)((Delta B)/(B))-((Delta C)/(C))-((3)/(2))((Delta D)/(D)) (d) ((Delta A)/(A))^(4)+(1)/(3)((Delta B)/(B))+((Delta C)/(C))+(3)/(2)((Delta D)/(D))

Given w = - 2, x = 3, y = 0 & z = - (1)/(2) . Find the value of (z)/(w) + x . A. 3 (1)/(4) B. - 3 (1)/(4) C. 3.2 D. 3.5

Find the relation if z_(1),z_(2),z_(3),z_(4) are the affixes of the vertices of a parallelogram taken in order.

For physical quantity z, given by expression z=(gh^(1"/"2)I)/(mx^3) , write the expression for relative error in it.

find z . 5-2((z-4)/3) =1/2(2z +3)

If z^(2)+(1)/(z^(2))=14, find the value of z^(3)+(1)/(z^(3))

Find the value of (( x -y )^3 + ( y - z )^3 + ( z - x )^3 )/ (9 ( x - y )( y - z ) ( z - x )) 1 . 0 2 . 1/9 3 . 1/3 4. 1

Find the minimum value of |z-1 if |z-3|-|z+1||=2

If z=(1)/(2)(i sqrt(3)-1), then find the value of (z-z^(2)+2z^(3))(2-z+z^(2))

If |z_(1)|=|z_(2)|=|z_(3)|=1 and z_(1)+z_(2)+z_(3)=0 then the area of the triangle whose vertices are z_(1),z_(2),z_(3) is 3sqrt(3)/4b.sqrt(3)/4c.1d.2