Home
Class 12
MATHS
Prove thatint1^3(dx)/(x^2(x+1))=2/3+log2...

Prove that`int_1^3(dx)/(x^2(x+1))=2/3+log2/3`

Text Solution

AI Generated Solution

To prove that \[ \int_1^3 \frac{dx}{x^2(x+1)} = \frac{2}{3} + \log\frac{2}{3}, \] we will start by simplifying the integrand. ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.3|24 Videos
  • INTEGRALS

    NCERT|Exercise SOLVED EXAMPLES|46 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.5|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

int_1^3(x^2)/(x^3+1)dx=?

Prove that int_2^3 x/(x^2+1) dx=log sqrt2

int_(1)^(3) (dx)/(x^(2)(x+1))=(2)/(3)+log .(2)/(3)

int1/x^(2)(2x+1)^(3)dx=

int_(1)^(3)(x-1)(x-2)(x-3)dx=

int_(1)^(3)(log x)^2/(x)dx

int_(1)^(3)(log x)/(x)dx

Verify that int(2x+3)/(x^(2)+3x)dx = log|x^(2)+3x|+c

Prove that : int 1/(a^(2)-x^(2)) dx = 1/(2a) log |(a+x)/(a-x)|+c.

int(ln x)/((1+x)^(3))dx