Home
Class 12
MATHS
Prove thatint0^1x e^x dx=1...

Prove that`int_0^1x e^x dx=1`

Text Solution

Verified by Experts

`I=[xe^x-int(1.e^xdx)]`
`=[xe^x-e^x]`
for the range 0 to 1
`I=[1e^1-e^1]-[0e^0-e^0]`
`I=0-(0-1)`
`I=1`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.3|24 Videos
  • INTEGRALS

    NCERT|Exercise SOLVED EXAMPLES|46 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.5|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) x e^(x) dx=1

int_(0)^(1)x e^(x)dx=

Prove that int_0^1 x(1-x)^5 dx=1/42

Prove that int_0^a f(x)dx=int_0^af(a-x)dx , hence evaluate int_0^pi(x sin x)/(1+cos^2 x)dx

Prove that int_(0)^(x)[x]dx=x[x]-(1)/(2)[x]([x]+1)

Prove that int_0^1 tan^-1((2x-1)/(1+x-x^2))dx=0

Prove that int_(0)^(25)e^(x-[x])dx=25(e-1) .

Prove that int e^x (tan^-1 x+1/(1+x^2)) dx=e^x tan^-1x+c

Prove that int _0^1(x^7-1)/(logx)dx