Home
Class 12
MATHS
The sum of 1+1/4+(1.3)/(4.8)+(1.3.5)/(4....

The sum of `1+1/4+(1.3)/(4.8)+(1.3.5)/(4.8.12)+.........oo` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \( S = 1 + \frac{1 \cdot 3}{4 \cdot 8} + \frac{1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12} + \ldots \), we can relate this series to the binomial theorem. ### Step-by-Step Solution: 1. **Identify the Pattern**: The series can be expressed as: \[ S = 1 + \frac{1 \cdot 3}{4 \cdot 8} + \frac{1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12} + \ldots \] The general term appears to be: \[ T_n = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{4^n \cdot n!} \] 2. **Recognize the Factorial Representation**: The numerator \( 1 \cdot 3 \cdot 5 \cdots (2n-1) \) can be represented as \( \frac{(2n)!}{2^n n!} \). Thus, we can rewrite the general term: \[ T_n = \frac{(2n)!}{2^n n! \cdot 4^n \cdot n!} = \frac{(2n)!}{(2^n \cdot 4^n) \cdot (n!)^2} = \frac{(2n)!}{(2^{2n}) \cdot (n!)^2} \] 3. **Use the Binomial Theorem**: The series \( S \) can be recognized as the expansion of \( (1-x)^{-1/2} \) evaluated at \( x = \frac{1}{4} \): \[ (1-x)^{-1/2} = \sum_{n=0}^{\infty} \frac{(2n)!}{(2^n \cdot n!)^2} x^n \] Substituting \( x = \frac{1}{4} \): \[ S = (1 - \frac{1}{4})^{-1/2} = \left(\frac{3}{4}\right)^{-1/2} = \frac{2}{\sqrt{3}} \] 4. **Final Result**: Thus, the sum of the series is: \[ S = \frac{2}{\sqrt{3}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MOTION|Exercise Exercise - 1 Objective Problems ( SECTION - A : GENERAL TERM)|3 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise - 1 Objective Problems ( SECTION - B : MIDDLE TERM )|4 Videos
  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 4|4 Videos
  • CIRCLE

    MOTION|Exercise Exercise - 4 | Level - II (Previous Year | JEE Advanced|22 Videos

Similar Questions

Explore conceptually related problems

(1)/(2.4)+(1.3)/(2.4.6)+(1.3.5.7)/(2.4.6.8*10)+.........oo is equal to

Sum the series (1)/(4)+(1.3)/(4.6)+(1.3.5)/(4.6.8)+.... to n terms and to infinity.

Knowledge Check

  • 2^(1/4). 4^(1/16). 8^(1/48) .........oo =

    A
    `sqrt2`
    B
    2
    C
    `2^(1/4)`
    D
    1
  • What is the sum of the series 1+(1)/(8)+(1.3)/(8.16)+(1.3.5)/(8.16.24)+…oo ?

    A
    `(2)/(sqrt(3))`
    B
    `2sqrt(3)`
    C
    `(sqrt(3))/(2)`
    D
    `(1)/(2sqrt(3))`
  • Similar Questions

    Explore conceptually related problems

    If p = (3)/(4) + (3.5)/( 4. 8) + ( 3.5.7)/(4.8.12) + ... oo , find p ^(2) + 2p - 4.

    The sum of the series 1+(1.3)/(6)+((1.3.5)/(6.8))+,,oo is

    (1)/(2.4)+(1.3)/(2.4.6)+(1.3.5)/(2.4.6.8)+(1.3.5.7)/(2.4.6.8*10)+....oo is equal to

    3+(1)/(4)(3+8)+(1)/(4)

    Value of (1+1/3)(1+1/(3^2))(1+1/(3^4))(1+1/(3^8))........oo is equal to a.3 b. 6/5 c. 3/2 d. none of these

    (1) / (1.2) + (1.3) / (1.2.3.4) + (1.3.5) / (1.2.3.4.5.6) + .... oo