Home
Class 12
MATHS
If (1 + x)^(n) = C(0) + C(1) x + C(2) x^...

If `(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n)` , prove that
`C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1)` .

A

`(n+1)2^(n-1)`

B

`n.2n+2`

C

`(n+2)22^(n-1)`

D

`(n+2)2^(n)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MOTION|Exercise Exercise - 2 (Level - I) Objective Problems (COLLECTION OF BINOMIAL COEFFICIENT)|3 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise - 2 (Level - I) Objective Problems ( DIVISIBILITY CONCEPT & REMAINDER CONCEPT )|2 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise - 2 (Level - I) Objective Problems ( NGT)|2 Videos
  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 4|4 Videos
  • CIRCLE

    MOTION|Exercise Exercise - 4 | Level - II (Previous Year | JEE Advanced|22 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(0) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) + C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " + 3^(2) *C_(3) + …+ n^(2) *C_(n) 1^(2)*C_(1) + 2^(2) *C_(2) = n(n+1)* 2^(n-2) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) , prove that C_(1)^(2) + 2C_(2)^(2) + 3C_(3)^(2) + ..+ nC_(n)^(2) = ((2n-1)!)/(((n-1)!)^(2))

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) prove that (C_(0))/(1) + (C_(2))/(3) + (C_(4))/(5) + ...= (2^(n))/(n+1) .