Home
Class 12
MATHS
If C(0),C(1), C(2),...,C(n) denote the c...

If `C_(0),C_(1), C_(2),...,C_(n)` denote the cefficients in
the expansion of `(1 + x)^(n)`, then
`C_(0) + 3 .C_(1) + 5 . C_(2)+ ...+ (2n + 1) C_(n) = ` .

A

`(n+1)2^(n)`

B

`n.2^(n+1)`

C

`(n-1)^(2n)`

D

None

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MOTION|Exercise Exercise - 2 (Level - I) Objective Problems (COLLECTION OF BINOMIAL COEFFICIENT)|3 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise - 2 (Level - I) Objective Problems ( DIVISIBILITY CONCEPT & REMAINDER CONCEPT )|2 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise - 2 (Level - I) Objective Problems ( NGT)|2 Videos
  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 4|4 Videos
  • CIRCLE

    MOTION|Exercise Exercise - 4 | Level - II (Previous Year | JEE Advanced|22 Videos

Similar Questions

Explore conceptually related problems

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0),C_(1),C_(2)..C_(n) denote the coefficients in the binomial expansion of (1+x)^(n), then C_(0)+2.C_(1)+3.C_(2)+.(n+1)C_(n)

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1. C_(1) - 2 . C_(2) + 3.C_(3) - 4. C_(4) + ...+ (-1)^(n-1) nC_(n)=

If C_(0), C_(1), c_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then C_(0) + (C_(1))/(2) + C_(2)/(3) + ...+ (C_(n))/(n+1) or, sum_(r=0)^(n) (C_(r))/(r+ 1)

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then 1^(2).C_(1) + 2^(2) + 3^(3).C_(3) + ...+n^(2).C_(n)= .

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If C_(0),C_(1), C_(2),...,C_(N) denote the binomial coefficients in the expansion of (1 + x)^(n) , then 1^(3). C_(1)-2^(3). C_(3) - 4^(3) . C_(4) + ...+ (-1)^(n-1)n^(3) C_(n)=

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then C_(0)""^(2) + 2 C_(1)""^(2) + 3C_(2)""^(2) + ...+ (n +1)C_(n)""^(2) =