Home
Class 12
MATHS
The function f(x) = {{:(x^(2)[1/x^(2)], ...

The function `f(x) = {{:(x^(2)[1/x^(2)], x ne 0, ),(0, x=0,):}` where [x] represents the greatest integer less than or equal to x

A

continous at x=1

B

continous at x=-1

C

continous at x=0

D

continous at x=2

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \( f(x) = \begin{cases} x^2 \cdot \lfloor \frac{1}{x^2} \rfloor & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \), we need to check the continuity at the points \( x = 1, -1, 0, \) and \( 2 \). ### Step 1: Check continuity at \( x = 1 \) 1. **Calculate \( f(1) \)**: \[ f(1) = 1^2 \cdot \lfloor \frac{1}{1^2} \rfloor = 1 \cdot \lfloor 1 \rfloor = 1 \] 2. **Calculate the right-hand limit (RHL) as \( x \to 1^+ \)**: \[ \text{For } x > 1, \quad \lfloor \frac{1}{x^2} \rfloor = 0 \quad \text{(since } \frac{1}{x^2} < 1\text{)} \] \[ \Rightarrow \text{RHL} = \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} x^2 \cdot 0 = 0 \] 3. **Calculate the left-hand limit (LHL) as \( x \to 1^- \)**: \[ \text{For } x < 1, \quad \lfloor \frac{1}{x^2} \rfloor = 1 \quad \text{(since } \frac{1}{x^2} \geq 1\text{)} \] \[ \Rightarrow \text{LHL} = \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} x^2 \cdot 1 = 1 \] 4. **Conclusion for continuity at \( x = 1 \)**: \[ \text{RHL} \neq \text{LHL} \Rightarrow f(x) \text{ is not continuous at } x = 1. \] ### Step 2: Check continuity at \( x = -1 \) 1. **Calculate \( f(-1) \)**: \[ f(-1) = (-1)^2 \cdot \lfloor \frac{1}{(-1)^2} \rfloor = 1 \cdot \lfloor 1 \rfloor = 1 \] 2. **Calculate the right-hand limit (RHL) as \( x \to -1^+ \)**: \[ \text{For } x > -1, \quad \lfloor \frac{1}{x^2} \rfloor = 1 \] \[ \Rightarrow \text{RHL} = \lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} x^2 \cdot 1 = 1 \] 3. **Calculate the left-hand limit (LHL) as \( x \to -1^- \)**: \[ \text{For } x < -1, \quad \lfloor \frac{1}{x^2} \rfloor = 0 \] \[ \Rightarrow \text{LHL} = \lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} x^2 \cdot 0 = 0 \] 4. **Conclusion for continuity at \( x = -1 \)**: \[ \text{RHL} \neq \text{LHL} \Rightarrow f(x) \text{ is not continuous at } x = -1. \] ### Step 3: Check continuity at \( x = 0 \) 1. **Calculate \( f(0) \)**: \[ f(0) = 0 \] 2. **Calculate the right-hand limit (RHL) as \( x \to 0^+ \)**: \[ \text{For } x > 0, \quad \lfloor \frac{1}{x^2} \rfloor \to \infty \text{ as } x \to 0^+ \] \[ \Rightarrow \text{RHL} = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^2 \cdot \lfloor \frac{1}{x^2} \rfloor = \infty \] 3. **Calculate the left-hand limit (LHL) as \( x \to 0^- \)**: \[ \text{For } x < 0, \quad \lfloor \frac{1}{x^2} \rfloor \to \infty \text{ as } x \to 0^- \] \[ \Rightarrow \text{LHL} = \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} x^2 \cdot \lfloor \frac{1}{x^2} \rfloor = \infty \] 4. **Conclusion for continuity at \( x = 0 \)**: \[ \text{RHL} \neq f(0) \Rightarrow f(x) \text{ is not continuous at } x = 0. \] ### Step 4: Check continuity at \( x = 2 \) 1. **Calculate \( f(2) \)**: \[ f(2) = 2^2 \cdot \lfloor \frac{1}{2^2} \rfloor = 4 \cdot \lfloor \frac{1}{4} \rfloor = 4 \cdot 0 = 0 \] 2. **Calculate the right-hand limit (RHL) as \( x \to 2^+ \)**: \[ \text{For } x > 2, \quad \lfloor \frac{1}{x^2} \rfloor = 0 \] \[ \Rightarrow \text{RHL} = \lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} x^2 \cdot 0 = 0 \] 3. **Calculate the left-hand limit (LHL) as \( x \to 2^- \)**: \[ \text{For } x < 2, \quad \lfloor \frac{1}{x^2} \rfloor = 0 \] \[ \Rightarrow \text{LHL} = \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} x^2 \cdot 0 = 0 \] 4. **Conclusion for continuity at \( x = 2 \)**: \[ \text{RHL} = \text{LHL} = f(2) = 0 \Rightarrow f(x) \text{ is continuous at } x = 2. \] ### Final Conclusion The function \( f(x) \) is continuous only at \( x = 2 \) and not continuous at \( x = 1, -1, \) and \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    MOTION|Exercise EXERCISE -1(SECTION - B CONTINUITY OF A FUNCTION IN AN INTERVAL)|3 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE -1(SECTION - C CLASSIFICATION OF DISCONTINUITY)|12 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos
  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) PREVIOUS YEAR - JEE ADVANCED|33 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|x-1|-[x] , where [x] is the greatest integer less than or equal to x, then

int_(0)^(15/2)[x-1]dx= where [x] denotes the greatest integer less than or equal to x

If f(x)={((sin[x])/([x]), [x]!=0),(0,[x]=0):} where [.] denotes the greatest integer less than or equal to x then

If f(x)={{:((sin[x])/([x])","" ""for "[x]ne0),(0","" ""for "[x]=0):} where [x] denotes the greatest integer less than or equal to x. Then find lim_(xto0)f(x).

If f(x)=|x-1|-[x] (where [x] is greatest integer less than or equal to x ) then.

If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):} where [x] denotes the greatest integer less than or equal to x, than lim_(xrarr0) f(x) is

The function f(x)=x-[x]+cos x, where [x]= the greatest integer less than or equal to x is a

The value of int_(0)^(2) x^([x^(2) +1]) dx , where [x] is the greatest integer less than or equal to x is

int_(-2)^2min(x-[x],-x-[-x])dx equals, where [ x ] represents greatest integer less than or equal to x.