Home
Class 12
MATHS
The function f defined by f(x)=lim(t->oo...

The function f defined by `f(x)=lim_(t->oo) {((1+sinpix)^t-1)/((1+sinpix)^t+1)}` is

A

everywhere continous

B

discontinuous at all integer values of `x`

C

continous at x=0

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    MOTION|Exercise EXERCISE -1(SECTION - D: IVT)|1 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE -1(SECTION - E THEOREMS OF CONTINUITY)|2 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE -1(SECTION - B CONTINUITY OF A FUNCTION IN AN INTERVAL)|3 Videos
  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) PREVIOUS YEAR - JEE ADVANCED|33 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto1) (a^(x-1)-1)/(sinpix).

If quad f(x)=lim_(t rarr oo)((| alpha+sin pi x|)^(t)-1)/((| alpha+sin pi x|)^(t)+1),x in(0,6)

If the function, f:[1,oo]to [1,oo] is defined by f(x)=3^(x(x-1)) , then f^(-1)(x) is

Let f(x)=lim_(nrarroo)((x^(2)+2x+4+sinpix^(n))-1)/((x^(2)+2x+4+sinpix^(n))+1) , then

If the function f:[1,oo)to[1,oo) is defined by f(x)=2^(x(x-1)) then f^(-1) is

If f(x)=lim_(t to 0)[(2x)/(pi).tan^(-1)(x/(t^(2)))] ,then f(1) is …….

Is the function f defined by f(x)={x , if""""xlt=1 5, if""""x >1 continuous at x" "=" "0?" "A t" "x" "=" "1?" "A t" "x" "=" "2?

The intervals of increase of f(x) defined by f(x)=int_(-1)^(x)(t^(2)+2t)(t^(2)-1)dt is equal to