Home
Class 12
MATHS
Let f: Rvec(0,1) be a continuous functio...

Let `f: Rvec(0,1)` be a continuous function. Then, which of the following function (s) has (have) the value zero at some point in the interval (0,1)? `e^x-int_0^xf(t)sintdt` (b) `f(x)+int_0^(pi/2)f(t)sintdt` `x-int_0^(pi/2-x)f(t)costdt` (d) `x^9-f(x)`

A

`e^( x) - int_(0)^(x) f(t) sin t dt`

B

`f(x ) = int_(0)^(pi/2) f(t) sin t dt`

C

`x-int_(0)^(pi/2 to x) f( t) cot dt`

D

`x^(9) -f( x)`

Text Solution

Verified by Experts

The correct Answer is:
C, D
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -I) PREVIOUS YEAR JEE MAIN|4 Videos
  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) PREVIOUS YEAR - JEE ADVANCED|33 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos

Similar Questions

Explore conceptually related problems

Let f:Rvec 0,1 be a continuous function.Then, which of the following function (s) has (have) the value zero at some point in the interval (0,1)?e^(x)-int_(0)^(x)f(t)sin tdt(b)f(x)+int_(0)^((pi)/(2))f(t)sin tdt(c)x-int_(0)^((pi)/(2)-x)f(t)cos tdt(d)x^(9)-f(x)

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

Prove that int_0^t f(x)g(t-x)dx=int_0^t g(x)f(t-x)dx

Let f(x) be a differentiable function in the interval (0, 2) then the value of int_(0)^(2)f(x)dx

Let f(x) be a differentiable function in the interval (0,2) then the value of int_(0)^(2)f(x) is

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)

Let f:[-pi/2,pi/2] to R be a continuous function such that f(0)=1 and int_0^(pi/3)f(t)dt=0 Then which of the following statement is(are) TRUE?