Home
Class 12
MATHS
Evaluate int (-1) ^(15) Sgn ({x})dx, (wh...

Evaluate `int _(-1) ^(15) Sgn ({x})dx,` (where `{**}` denotes the fractional part function)

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int_{-1}^{15} \text{Sgn}(\{x\}) \, dx\), where \(\{x\}\) denotes the fractional part of \(x\), we can follow these steps: ### Step 1: Understand the Signum Function The signum function, \(\text{Sgn}(x)\), is defined as: - \(\text{Sgn}(x) = 1\) if \(x > 0\) - \(\text{Sgn}(x) = 0\) if \(x = 0\) - \(\text{Sgn}(x) = -1\) if \(x < 0\) ### Step 2: Analyze the Fractional Part Function The fractional part function \(\{x\}\) is defined as: \[ \{x\} = x - \lfloor x \rfloor \] This means that \(\{x\}\) is always between \(0\) and \(1\) for any real number \(x\). ### Step 3: Determine the Behavior of \(\text{Sgn}(\{x\})\) Since \(\{x\}\) is always non-negative and only equals \(0\) when \(x\) is an integer, we can conclude: - For \(x \in (-1, 0)\), \(\{x\}\) is positive, hence \(\text{Sgn}(\{x\}) = 1\). - For \(x \in (0, 15)\), \(\{x\}\) is also positive, hence \(\text{Sgn}(\{x\}) = 1\). - At integer points, \(\{x\} = 0\), but since these are isolated points, they do not affect the integral. ### Step 4: Rewrite the Integral Given that \(\text{Sgn}(\{x\}) = 1\) almost everywhere in the interval \([-1, 15]\), we can simplify the integral: \[ \int_{-1}^{15} \text{Sgn}(\{x\}) \, dx = \int_{-1}^{15} 1 \, dx \] ### Step 5: Evaluate the Integral Now we can evaluate the integral: \[ \int_{-1}^{15} 1 \, dx = [x]_{-1}^{15} = 15 - (-1) = 15 + 1 = 16 \] ### Final Answer Thus, the value of the integral is: \[ \int_{-1}^{15} \text{Sgn}(\{x\}) \, dx = 16 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    MOTION|Exercise ELEMENTRAY EXERCISE|47 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -2 (LEVEL-I)|97 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(-3)^(5) e^({x})dx , where {.} denotes the fractional part functions.

If the area bounded by the curve |x+y|+|x-y|=2 is A, then the value of int_(0)^(6A) {x}dx= (where {x}, denotes the fractional part function.

Solve {x+1}-x^(2)+2x>0( where {.} denotes fractional part function)

The value of the integral int_(-4)^(4)e^(|x|){x}dx is equal to (where {.} denotes the fractional part function)

Draw the graph of y =(1)/({x}) , where {*} denotes the fractional part function.

Evaluate int_(0)^(2){x} d x , where {x} denotes the fractional part of x.

lim_(x rarr1)({x})^((1)/(n pi x)) ,where {.} denotes the fractional part function

MOTION-DEFINITE INTEGRATION -EXERCISE -4 LEVEL-II
  1. Evaluate int (-1) ^(15) Sgn ({x})dx, (where {**} denotes the fractiona...

    Text Solution

    |

  2. Let y =f (x) be a twice differentiable, non- negative function defined...

    Text Solution

    |

  3. Let y =f (x) be a twice differentiable, non- negative function defined...

    Text Solution

    |

  4. Let y =f (x) be a twice differentiable, non- negative function defined...

    Text Solution

    |

  5. The vlaue of ((5050)underset(0)overset(1)int(1-x^(50))^(100)dx)/(under...

    Text Solution

    |

  6. lim(x->pi/4)(int2^(sec^2x)f(t) dt)/(x^2-(pi^2)/16) equal :

    Text Solution

    |

  7. Match the integrals in Column I with the values in {:("Column II. ,...

    Text Solution

    |

  8. Let S(n)=underset(k=1)overset(n)sum (n)/(n^(2)+nk+k^(2)) and T(n)=unde...

    Text Solution

    |

  9. Let f be a non-negative function defined on the interval .[0,1].If int...

    Text Solution

    |

  10. Let f:R to R be a function which satisfies f(x)=overset(x)underset(0...

    Text Solution

    |

  11. The value of underset(xrarr0)(lim)(1)/(x^(3)) int(0)^(x)(tln(1+t))/(t^...

    Text Solution

    |

  12. The value of overset(1)underset(0)int (x^(4)(1-x)^(4))/(1+x^(2))dx is

    Text Solution

    |

  13. Let f be a real-valued function defined on the inverval (-1,1) such th...

    Text Solution

    |

  14. For any real number x ,l e t[x] denote the largest integer less than o...

    Text Solution

    |

  15. T h ev a l u eofint(sqrt(1n2))^(sqrt(1n3))(xsinx^2)/(sinx^2+sin(1n6-x^...

    Text Solution

    |

  16. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  17. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  18. Let f:[1/2,1]vecR (the set of all real numbers) be a positive, non-con...

    Text Solution

    |

  19. Find a for which lim(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+...

    Text Solution

    |

  20. Let f:(0,oo)vecR be given by f(x)=int(1/x)^x(e^(-(t+1/t))dt)/t , then ...

    Text Solution

    |

  21. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |