Home
Class 12
MATHS
int[1/logx-1/(logx)^2]dx=...

`int[1/logx-1/(logx)^2]dx=`

Text Solution

Verified by Experts

The correct Answer is:
`e - (2)/(ln2)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -2 (LEVEL-I)|97 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -2 (LEVEL-II)|11 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos

Similar Questions

Explore conceptually related problems

int_(e)^(e^(2)) (1/logx-1/((logx)^(2)))dx=

If int _(2)^(e) (1/(logx)-1/(logx)^(2))dx = a + b/(log2) , then

If int[(logx-1)/(1+(logx)^2)]^2dx=f(x)/(1+(g(x))^2)+c , then (A) f(x)=x (B) f(x)=x^2 (C) g(x)=logx (D) g(x)=(logx)^2

int(1)/(xlogx(2+logx))dx=

int (log x)/(1+logx)^2 dx

int[f(logx)+f'(logx)]dx=

int[f(logx)+f'(logx)]dx=

Evaluate int e^x(1/logx-1/(x(logx)^2)) dx

Evaluate : int[(1)/(logx)-(1)/((log x)^(2))]dx