Home
Class 12
MATHS
int (2) ^(3) (dx )/( (x-1) sqrt(x ^(2) -...

`int _(2) ^(3) (dx )/( (x-1) sqrt(x ^(2) - 2x ))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{2}^{3} \frac{dx}{(x-1) \sqrt{x^2 - 2x}} \] we will use a substitution method. Let's go through the steps: ### Step 1: Substitution We start by making the substitution \( t^2 = x^2 - 2x \). This implies: \[ x^2 - 2x = t^2 \implies x^2 - 2x + 1 = t^2 + 1 \implies (x-1)^2 = t^2 + 1 \] Now, differentiating \( t^2 = x^2 - 2x \): \[ 2t \frac{dt}{dx} = 2x - 2 \implies \frac{dt}{dx} = \frac{x-1}{t} \implies dx = \frac{t}{x-1} dt \] ### Step 2: Rewrite the Integral Substituting \( dx \) into the integral, we have: \[ I = \int \frac{t \, dt}{(x-1) \sqrt{x^2 - 2x}} \] Since \( \sqrt{x^2 - 2x} = t \), we can rewrite the integral as: \[ I = \int \frac{t \, dt}{(x-1) t} = \int \frac{dt}{x-1} \] ### Step 3: Express \( x-1 \) in terms of \( t \) From our earlier substitution, we have: \[ (x-1)^2 = t^2 + 1 \implies x-1 = \sqrt{t^2 + 1} \] Thus, the integral becomes: \[ I = \int \frac{dt}{\sqrt{t^2 + 1}} \] ### Step 4: Integrate The integral \( \int \frac{dt}{\sqrt{t^2 + 1}} \) is known to be: \[ \int \frac{dt}{\sqrt{t^2 + 1}} = \ln |t + \sqrt{t^2 + 1}| + C \] ### Step 5: Resubstitute and Evaluate Limits Now we need to change the limits back to the original variable \( x \). When \( x = 2 \): \[ t^2 = 2^2 - 2 \cdot 2 = 0 \implies t = 0 \] When \( x = 3 \): \[ t^2 = 3^2 - 2 \cdot 3 = 3 \implies t = \sqrt{3} \] Thus, our limits change from \( t = 0 \) to \( t = \sqrt{3} \). Now we can evaluate: \[ I = \left[ \ln |t + \sqrt{t^2 + 1}| \right]_{0}^{\sqrt{3}} = \ln(\sqrt{3} + 2) - \ln(0 + 1) = \ln(\sqrt{3} + 2) \] ### Step 6: Final Result Thus, the value of the integral is: \[ I = \ln(\sqrt{3} + 2) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -2 (LEVEL-I)|97 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -2 (LEVEL-II)|11 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos

Similar Questions

Explore conceptually related problems

int(2x-1)/(sqrt(x^(2)-x+1))dx

int(2x-1)/(sqrt(x^(2)-x-1))dx

int((2x-1)dx)/(sqrt(x^(2)-x+3))

int((2x-1))/(sqrt(x^(2)-x-1))dx

int(dx)/((1+x)sqrt(3+2x-x^(2)))=

int(1)/(sqrt(2x^(2)+2x+3))dx

int_(1)^(2)(dx)/(sqrt(x^(2)+4x+3))

int (2x+1)(sqrt(x^(2)+x+1))dx

int(x+1)/(sqrt(x^(2)+2x+1))dx=

int_(1)^(2) (x)/(sqrt(1+2x^(2)))dx