Home
Class 12
MATHS
Let A = int (3//4) ^(4//3) (2x ^(2) + x ...

Let `A = int _(3//4) ^(4//3) (2x ^(2) + x +1 )/( x ^(3) + x ^(2) + x + 1 ) dx` then find the value of `e ^(A).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( A = \int_{3/4}^{4/3} \frac{2x^2 + x + 1}{x^3 + x^2 + x + 1} \, dx \), we will follow these steps: ### Step 1: Simplify the Denominator The denominator can be factored as follows: \[ x^3 + x^2 + x + 1 = (x^2 + 1)(x + 1) \] This is done by factoring out \( x + 1 \) from the polynomial. **Hint:** Look for common factors in the polynomial to simplify it. ### Step 2: Rewrite the Integral Now we can rewrite the integral as: \[ A = \int_{3/4}^{4/3} \frac{2x^2 + x + 1}{(x + 1)(x^2 + 1)} \, dx \] **Hint:** Always express the integrand in a simpler form before proceeding with integration. ### Step 3: Use Partial Fraction Decomposition We can express the integrand using partial fractions: \[ \frac{2x^2 + x + 1}{(x + 1)(x^2 + 1)} = \frac{A}{x + 1} + \frac{Bx + C}{x^2 + 1} \] Here, \( A \), \( B \), and \( C \) are constants to be determined. **Hint:** Set up the equation by multiplying both sides by the denominator to eliminate the fraction. ### Step 4: Find Coefficients Multiplying through by \( (x + 1)(x^2 + 1) \) gives: \[ 2x^2 + x + 1 = A(x^2 + 1) + (Bx + C)(x + 1) \] Expanding and comparing coefficients will yield a system of equations: 1. \( A + B = 2 \) 2. \( C + A = 1 \) 3. \( B = 1 \) From these equations, we can solve for \( A \), \( B \), and \( C \): - From \( B = 1 \), substitute into the first equation: \( A + 1 = 2 \) gives \( A = 1 \). - Substitute \( A = 1 \) into the second equation: \( C + 1 = 1 \) gives \( C = 0 \). Thus, we have: \[ A = 1, \quad B = 1, \quad C = 0 \] **Hint:** Use substitution and elimination methods to solve for the coefficients. ### Step 5: Rewrite the Integral Now we can rewrite the integral: \[ A = \int_{3/4}^{4/3} \left( \frac{1}{x + 1} + \frac{x}{x^2 + 1} \right) \, dx \] **Hint:** Break the integral into simpler parts that can be integrated separately. ### Step 6: Integrate Each Term Integrate each term separately: 1. \( \int \frac{1}{x + 1} \, dx = \ln |x + 1| \) 2. For \( \int \frac{x}{x^2 + 1} \, dx \), use the substitution \( u = x^2 + 1 \) which gives \( \frac{1}{2} \ln |x^2 + 1| \). Thus, \[ A = \left[ \ln |x + 1| + \frac{1}{2} \ln |x^2 + 1| \right]_{3/4}^{4/3} \] **Hint:** Remember to apply limits after integration. ### Step 7: Evaluate the Limits Calculate \( A \) at the upper and lower limits: \[ A = \left( \ln \left( \frac{4}{3} + 1 \right) + \frac{1}{2} \ln \left( \left( \frac{4}{3} \right)^2 + 1 \right) \right) - \left( \ln \left( \frac{3}{4} + 1 \right) + \frac{1}{2} \ln \left( \left( \frac{3}{4} \right)^2 + 1 \right) \right) \] **Hint:** Substitute the limits carefully and simplify. ### Step 8: Final Calculation After evaluating and simplifying, we find: \[ A = \ln \left( \frac{4/3}{3/4} \right) = \ln \left( \frac{16}{9} \right) \] ### Step 9: Find \( e^A \) Finally, we compute: \[ e^A = e^{\ln \left( \frac{16}{9} \right)} = \frac{16}{9} \] ### Conclusion Thus, the value of \( e^A \) is: \[ \boxed{\frac{16}{9}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -2 (LEVEL-I)|97 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -2 (LEVEL-II)|11 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=e^(x)+2x+1 then find the value of int_(2)^(e+3)f^(-1)(x)dx

int(x^(4)-2x^(2)+4x+1)/(x^(3)-x^(2)-x+1)dx

int (e ^ (3x) + e ^ (x)) / (e ^ (4x) -e ^ (2x) +1) dx

int(x^(4)+3x^(3)+x^(2)-1)/(x^(3)+x^(2)-x-1)dx

int_(-pi//4)^(pi//4)(e^(x)(x^(3)sinx))/(e^(2x)-1)dx equals

If F(x)=int((1+x)[(1-x+x^(2))(1+x+x^(2))+x^(2)])/(1+2x+3x^(2)+4x^(3)+3x^(4)+2x^(5)+x^(6))dx then find the value of [F(99)-F(3)]

Evaluate: int_(-1)^(4)f(x)dx=4 and int_(2)^(4)(3-f(x))dx=7 then find the value of int_(2)^(-1)f(x)dx

int(x^(4)+3x^(2)+1)/(x^(3))dx

MOTION-DEFINITE INTEGRATION -ELEMENTRAY EXERCISE
  1. int (a) ^(b) (dx)/( sqrt(1 + x ^(2))) where a = (e-e^(-1))/( 2 ) &b = ...

    Text Solution

    |

  2. int (x^(x)(x^(2x)+1)("ln"x+1))/(x^(4x)+1)dx

    Text Solution

    |

  3. int (0) ^(1) x ^(5) sqrt((1 + x ^(2))/(sqrt(1- x^(2))))dx

    Text Solution

    |

  4. Suppose that the function f, g, f',and g' are continuous over [0,1], g...

    Text Solution

    |

  5. The value of the integral overset(pi//4)underset(0)int (sin theta+cos ...

    Text Solution

    |

  6. int (0) ^(pi) sin ^(2) theta cos theta d theta

    Text Solution

    |

  7. Let g(x)=int(1+2cosx)/((cosx+2)^2)dxa n dg(0)=0. then the value of 8g(...

    Text Solution

    |

  8. int (0) ^(pi//2) (x + sin x )/(1 + cos x ) dx

    Text Solution

    |

  9. Let A = int (3//4) ^(4//3) (2x ^(2) + x +1 )/( x ^(3) + x ^(2) + x + 1...

    Text Solution

    |

  10. int (2 -x ^(2))/( ( a + 1) (1- x ^(2)))dx

    Text Solution

    |

  11. int(-1)^1(d/dx(1/(1+e^(1/x))))dx

    Text Solution

    |

  12. int (1) ^(e ) (dx )/(ln (x ^(x) e ^(x)))

    Text Solution

    |

  13. int (0) ^(pi)[ cos ^(2) ((3pi)/(8) - (x )/(4)) - cos ^(2) ((11pi)/(8)+...

    Text Solution

    |

  14. If f(pi) =2 and int0^pi (f(x) + f''(x)) sinx dx =5 then f(0) is equal ...

    Text Solution

    |

  15. int (a) ^(b ) (| x |)/(x ) dx

    Text Solution

    |

  16. If f(x)=e^(-x)+2e^(-2x)+3 e^(-3x)+.....+oo, then int(ln2)^(ln3) f(x)dx...

    Text Solution

    |

  17. int (0) ^(pi//2) sqrt((sec x - tan x )/(sec x + tan x )) (cosec x )/(s...

    Text Solution

    |

  18. int(0) ^(1) x f ''(x) dx, where f (x) = cos (tan ^(-1)x)

    Text Solution

    |

  19. If g(x) is the inverse of f(x) and f(x) has domain x in [1,5], where...

    Text Solution

    |

  20. Suppose f is continuous, f(0)=0,f(1)=1,f^(prime)(x)>0"and"int0^1f(x)dx...

    Text Solution

    |