Home
Class 12
MATHS
Evaluate sin(1/2cot^(-1)((-3)/(4))...

Evaluate `sin(1/2cot^(-1)((-3)/(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( \sin\left(\frac{1}{2} \cot^{-1}\left(-\frac{3}{4}\right)\right) \), we can follow these steps: ### Step 1: Define the angle Let \( \theta = \cot^{-1}\left(-\frac{3}{4}\right) \). This means that \( \cot(\theta) = -\frac{3}{4} \). ### Step 2: Convert to sine and cosine Using the definition of cotangent, we have: \[ \cot(\theta) = \frac{\text{adjacent}}{\text{opposite}} = -\frac{3}{4} \] This implies that we can represent this in a right triangle where the adjacent side is -3 and the opposite side is 4. To find the hypotenuse, we use the Pythagorean theorem: \[ \text{hypotenuse} = \sqrt{(-3)^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] ### Step 3: Find sine and cosine Now we can find \( \sin(\theta) \) and \( \cos(\theta) \): \[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{4}{5} \] \[ \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{-3}{5} \] ### Step 4: Use the half-angle formula Next, we need to find \( \sin\left(\frac{1}{2} \theta\right) \). We can use the half-angle formula: \[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \cos(\theta)}{2}} \] Substituting \( \cos(\theta) = -\frac{3}{5} \): \[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \left(-\frac{3}{5}\right)}{2}} = \sqrt{\frac{1 + \frac{3}{5}}{2}} = \sqrt{\frac{\frac{5}{5} + \frac{3}{5}}{2}} = \sqrt{\frac{\frac{8}{5}}{2}} = \sqrt{\frac{8}{10}} = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}} \] ### Step 5: Final result Thus, the value of \( \sin\left(\frac{1}{2} \cot^{-1}\left(-\frac{3}{4}\right)\right) \) is: \[ \frac{2}{\sqrt{5}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Section A: Domain, Range|28 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -2 (Level -I)|7 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|6 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-4|17 Videos

Similar Questions

Explore conceptually related problems

sin[(1)/(2)cot^(-1)((2)/(3))] =

Find the value of sin((1)/(2)cot^(-1)(-(3)/(4)))

Find the value of sin((1)/(2) cot^(-1) (-(3)/(4)))

Evaluate: sin{tan^(-1)((7)/(24))}( ii) cos{cot^(-1)((5)/(12))}csc{cot^(-1)((4)/(3))}

The value of s in((1)/(2)cot^(-1)(-(3)/(4)))+cos((1)/(2)cot^(-1)(-(3)/(4))) is/are equal to- a.1b.(3sqrt(2))/(10)c .sqrt(2)sin((1)/(2)cot^(-1)(-(3)/(4))+cot^(-1)(1))d2sin(pi-tan^(-o1)(1)-(1)/(2)(tan^(-1)(1))/(3))'

FInd the value of sin[2cot^(-1)(-(5)/(12))]

Evaluate: cos ec{cot^(-1)(-(4)/(3))}

Evaluate: sin{sin^(-1)(-(3)/(5))+cot^(-1)(-(5)/(12))}

Evaluate the following : sin { 1/2 cot^(-1) . ((-3)/4)}