Home
Class 12
MATHS
The set of values of 'x' for which the f...

The set of values of 'x' for which the formula `2sin^(-1)x=sin^(-1)2x sqrt(1-x^(2))` is true is

A

`(-1,0)`

B

`[0,1]`

C

`[-sqrt3/2,sqrt3/2]`

D

`[-1/sqrt2,1/sqrt2]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \sin^{-1} x = \sin^{-1} (2x \sqrt{1 - x^2}) \), we will follow these steps: ### Step 1: Set Up the Equation Let \( \theta = 2 \sin^{-1} x \). Then, we can express \( \sin^{-1} x \) as \( \sin^{-1} x = \frac{\theta}{2} \). ### Step 2: Express \( x \) in Terms of \( \theta \) From the definition of the inverse sine function, we have: \[ x = \sin\left(\frac{\theta}{2}\right) \] ### Step 3: Substitute \( x \) into the Right-Hand Side Now, substitute \( x = \sin\left(\frac{\theta}{2}\right) \) into the right-hand side of the equation: \[ \sin^{-1}\left(2x \sqrt{1 - x^2}\right) = \sin^{-1}\left(2 \sin\left(\frac{\theta}{2}\right) \sqrt{1 - \sin^2\left(\frac{\theta}{2}\right)}\right) \] Using the identity \( \sqrt{1 - \sin^2\left(\frac{\theta}{2}\right)} = \cos\left(\frac{\theta}{2}\right) \), we get: \[ = \sin^{-1}\left(2 \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right)\right) \] ### Step 4: Apply the Double Angle Formula Using the double angle formula for sine, we have: \[ 2 \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right) = \sin(\theta) \] Thus, we can rewrite the right-hand side: \[ \sin^{-1}(\sin(\theta)) \] ### Step 5: Solve for \( \theta \) Since \( \sin^{-1}(\sin(\theta)) = \theta \) for \( \theta \) in the range \([- \frac{\pi}{2}, \frac{\pi}{2}]\), we have: \[ \theta = 2 \sin^{-1} x \] ### Step 6: Determine the Range of \( \theta \) For \( \theta \) to be in the range \([- \frac{\pi}{2}, \frac{\pi}{2}]\), we need: \[ -\frac{\pi}{2} \leq 2 \sin^{-1} x \leq \frac{\pi}{2} \] Dividing the entire inequality by 2 gives: \[ -\frac{\pi}{4} \leq \sin^{-1} x \leq \frac{\pi}{4} \] ### Step 7: Apply the Sine Function Taking the sine of all parts of the inequality (since sine is an increasing function), we have: \[ \sin\left(-\frac{\pi}{4}\right) \leq x \leq \sin\left(\frac{\pi}{4}\right) \] This simplifies to: \[ -\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}} \] ### Conclusion The set of values of \( x \) for which the formula \( 2 \sin^{-1} x = \sin^{-1} (2x \sqrt{1 - x^2}) \) is true is: \[ x \in \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right] \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -2 (Level -I)|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -2 (Level -II)|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|6 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-4|17 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)x+sin^(-1)sqrt(1-x^(2))

(sin^(-1)x)/(sqrt(1-x^(2))

Prove that 2sin^(-1)x=sin^(-1)[2x sqrt(1-x^(2))]

The value of x for which 2 sin^(-1)x =sin^(-1)(2xsqrt(1-x^(2))) is

The set of values of x for which the function f(x)=(1)/(x)+2^(sin^(-1)x)+(1)/(sqrt(x-2)) exists is

Formula for 2sin^(-1)x and 3sin^(-1)x

The set of vlues of x for which tan^(-1)(x)/sqrt(1-x^(2))=sin^(-1) x holds is

Find the value of x for which f(x) = 2 sin^(-1) sqrt(1 - x) + sin^(-1) (2 sqrt(x - x^(2))) is constant

If sin^(-1)x+sin^(-1)(1-x)=sin^(-1)sqrt(1-x^(2)), then x is equal to

The true set of valued of 'K' for which sin ^(-1)((1)/(1+sin ^(2)x)) = (kpi)/(6) may have a solution is :

MOTION-INVERSE TRIGONOMETRIC FUNCTIONS-Section A: Domain, Range
  1. The value of cos (1/2 cos^(-1) . 1/8) is equal to

    Text Solution

    |

  2. The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x i...

    Text Solution

    |

  3. If xlt0, then value of tan^(-1)(x)+tan^(-1)(1/x) is equal to

    Text Solution

    |

  4. tan^-1a+tan^-1b, where a > 0, b>0, ab > 1, is equal to

    Text Solution

    |

  5. Find the value of cot^(-1) [(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-...

    Text Solution

    |

  6. If sin^(-1)x + sin^(-1)y =(2pi)/3, then: cos^(-1)x +cos^(-1)y=

    Text Solution

    |

  7. if tan ^-1 (( sqrt (1+x^2)-1)/x) = pi/45 then:

    Text Solution

    |

  8. If 1/2 sin^(-1)((3sin2theta)/(5+4cos2theta))=(pi)/4, then tan theta is...

    Text Solution

    |

  9. cos^(-1){1/2x^(2)+sqrt(1+x^(2))sqrt(1-x^(2))/(4)}=cos^(-1)(x)/(2)-cos^...

    Text Solution

    |

  10. Find all possible values of p and q for which cos^-1 sqrt(p)+cos^-1 sq...

    Text Solution

    |

  11. The equation sin^-1x-cos^-1x=cos^-1(sqrt3/2) has

    Text Solution

    |

  12. The set of values of 'x' for which the formula 2sin^(-1)x=sin^(-1)2x s...

    Text Solution

    |

  13. The value of x satisfying sin^-1x + sin^-1(1– x ) = cos^1 x are

    Text Solution

    |

  14. The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi...

    Text Solution

    |

  15. The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+...

    Text Solution

    |

  16. The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+...

    Text Solution

    |

  17. If cot^(-1)n/pi>pi/6,n in N , then the maximum value of n is 6 (b) ...

    Text Solution

    |

  18. Which one of the following correct?

    Text Solution

    |

  19. If underset(i=1)overset(n)sum cos^(-1) alpha(i)=0," then "underset(i=1...

    Text Solution

    |

  20. If sum(i=1)^(2n) sin^-1 xi = n pi then find the value of sum(i=1)^(...

    Text Solution

    |