Home
Class 12
MATHS
If [cot^(-1)x]+[cos^(-1)x]=0 then comple...

If `[cot^(-1)x]+[cos^(-1)x]=0` then complete set of values of 'x' is (where [*] denotes the greatest integer function)

A

`(cos 1,1]`

B

`(cot 1, cos 1)`

C

`(cot 1, 1]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \([cot^{-1} x] + [cos^{-1} x] = 0\), where \([\cdot]\) denotes the greatest integer function, we will proceed step by step. ### Step 1: Understand the ranges of the functions involved The function \(cot^{-1} x\) has a range of \((0, \pi)\) and the function \(cos^{-1} x\) has a range of \([0, \pi]\). **Hint:** Identify the ranges of the inverse trigonometric functions to understand their behavior. ### Step 2: Set up the equation Given the equation \([cot^{-1} x] + [cos^{-1} x] = 0\), we can denote: - Let \(y_1 = [cot^{-1} x]\) - Let \(y_2 = [cos^{-1} x]\) This means \(y_1 + y_2 = 0\). **Hint:** Express the greatest integer values in terms of the ranges of the functions. ### Step 3: Analyze the implications of the equation Since \(y_1\) and \(y_2\) are both integers, for their sum to equal zero, we must have: - \(y_1 = 0\) and \(y_2 = 0\) This means: - \(0 \leq cot^{-1} x < 1\) - \(0 \leq cos^{-1} x < 1\) **Hint:** Consider what values of \(x\) would yield \(cot^{-1} x\) and \(cos^{-1} x\) in the specified ranges. ### Step 4: Solve for \(x\) from \(cot^{-1} x\) From \(0 \leq cot^{-1} x < 1\), we can deduce: - \(cot^{-1} x = 0\) when \(x \to \infty\) - \(cot^{-1} x = 1\) when \(x = 1\) Thus, \(x\) must be in the interval \( (1, \infty) \). **Hint:** Determine the values of \(x\) that satisfy the conditions derived from \(cot^{-1} x\). ### Step 5: Solve for \(x\) from \(cos^{-1} x\) From \(0 \leq cos^{-1} x < 1\), we know: - \(cos^{-1} x = 0\) when \(x = 1\) - \(cos^{-1} x = 1\) when \(x = cos(1)\) Thus, \(x\) must be in the interval \( (cos(1), 1] \). **Hint:** Analyze the implications of the range for \(cos^{-1} x\) to find valid \(x\) values. ### Step 6: Combine the results Now we need to find the intersection of the two intervals: - From \(cot^{-1} x\): \(x \in (1, \infty)\) - From \(cos^{-1} x\): \(x \in (cos(1), 1]\) The only value that satisfies both conditions is \(x = 1\). **Hint:** Look for common values in the derived intervals. ### Final Answer Thus, the complete set of values of \(x\) that satisfies the equation \([cot^{-1} x] + [cos^{-1} x] = 0\) is: \[ x = 1 \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -2 (Level -II)|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -3|75 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Section A: Domain, Range|28 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|6 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-4|17 Videos

Similar Questions

Explore conceptually related problems

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

The value of int_(-1)^(1)(x-[x])dx , (where [.] denotes greatest integer function)is

If [log_2 (x/[[x]))]>=0 . where [.] denotes the greatest integer function, then :

Sove [cot^(-1) x] + [cos^(-1) x] =0 , where [.] denotes the greatest integer function

Solution set of [sin^(-1)x]>[cos^(-1)x]. where [*] denotes greatest integer function

The value of lim_(x rarr0)[(sin x)/(x)] is (where [.] denotes greatest integer function)

int_(-1)^(1)[cos^(-1)x]dx (where [.] denotes greatest integer function)

If [sin^(-1)x]+[cos^(-1)x]=0, where 'x' is a non negative real number and [.] denotes the greatest integer function,then complete set of values of x is -(A)(cos1,1)(B)(-1,cos1) (C) (sin1,1)(D)(cos1,sin1)

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function: