Home
Class 12
MATHS
Let f(x) = sin^(-1) x + cos^(-1) x ". T...

Let `f(x) = sin^(-1) x + cos^(-1) x ". Then " pi/2 ` is equal to

A

`f(1/2)`

B

`f(k^(2)-2k+3), k in R`

C

`f(1/(1+k^(2))), k in R`

D

f(-2)

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -3|75 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -I|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -2 (Level -I)|7 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|6 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-4|17 Videos

Similar Questions

Explore conceptually related problems

If 4 "sin"^(-1)x+"cos"^(-1)x=pi , then x is equal to

If 4sin^(-1)x+cos^(-1)x=pi , then x is equal to

Let [x]= greatest integer le x and f(x) = cos([pi^(2)]x) + sin([e^(2)]x) then f(pi//4) is equal to