Home
Class 12
MATHS
If sin^(-1) x+sin^(-1)y+sin^(-1)z=(3pi)/...

If `sin^(-1) x+sin^(-1)y+sin^(-1)z=(3pi)/(2)`, then

A

`x^(100)+y^(100)+z^(100)- (9)/(x^(101)+y^(101)+z^(101))=0`

B

`x^(22)+y^(42)+z^(62)-z^(220)-y^(420)-z^(620)=0`

C

`x^(50)+y^(25)+z^(5)=0`

D

`x^(2008)+y^(2008)+z^(2008)/((xyz)^(2009))=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2} \), we can follow these steps: ### Step 1: Analyze the Range of \( \sin^{-1} \) The function \( \sin^{-1} x \) (inverse sine) has a range of \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \). Therefore, the maximum value of \( \sin^{-1} x + \sin^{-1} y + \sin^{-1} z \) occurs when each of \( \sin^{-1} x \), \( \sin^{-1} y \), and \( \sin^{-1} z \) is at its maximum, which is \( \frac{\pi}{2} \). ### Step 2: Calculate the Maximum Possible Sum If each of \( \sin^{-1} x \), \( \sin^{-1} y \), and \( \sin^{-1} z \) is \( \frac{\pi}{2} \), then: \[ \sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} = \frac{3\pi}{2} \] This means that for the equation to hold, each of \( x \), \( y \), and \( z \) must be equal to 1, since \( \sin^{-1}(1) = \frac{\pi}{2} \). ### Step 3: Conclusion Thus, we conclude that: \[ x = 1, \quad y = 1, \quad z = 1 \] ### Final Answer The values of \( x \), \( y \), and \( z \) are all equal to 1. ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -3|75 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -I|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -2 (Level -I)|7 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|6 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-4|17 Videos

Similar Questions

Explore conceptually related problems

Q.if sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2), then

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2) ,then the value of x^(100)+y^(100)+z^(100)+(12)/(x^(101)+y^(101)+z^(101)) is equal to

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(pi)/(2) , then the value of x^(2)+y^(2)+z^(2)+2xyz is equal to

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) the value of x^(100)+y^(100)+z^(100)-(9)/(x^(101)+y^(101)+z^(101)) is

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2), find the value of x^(2)+y^(2)+z^(2)

If x,y,z in[-1,1] such that sin^(-1)x+sin^(-1)y+sin^(-1)z=-(3 pi)/(2), find the value of x^(2)+y^(2)+z^(2)

If sin^(-1) x + sin^(-1) y + sin^(-1) z = 3pi//2 , evaluate: x^(100) + y^(100) + z^(100) + (9)/(x^(101) + y^(101) + z^(101)) .

Let x,y,z in[-1,1] such that sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2). Find the value of x^(2018)+y^(2019)+z^(2020)