Home
Class 12
MATHS
Find the domain of defination the follow...

Find the domain of defination the following functions.
`f(x)=sqrt(3-x)+cos^(-1) ((3-2x)/(5))+ln (2|x|-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sqrt{3 - x} + \cos^{-1}\left(\frac{3 - 2x}{5}\right) + \ln(2|x| - 3) \), we need to ensure that each component of the function is defined. Let's analyze each part step by step. ### Step 1: Analyze the square root function The square root function \( \sqrt{3 - x} \) is defined when the expression inside the square root is non-negative: \[ 3 - x \geq 0 \] This implies: \[ x \leq 3 \] Thus, the domain for this part is: \[ (-\infty, 3] \] ### Step 2: Analyze the inverse cosine function The function \( \cos^{-1}\left(\frac{3 - 2x}{5}\right) \) is defined when the argument lies within the interval \([-1, 1]\): \[ -1 \leq \frac{3 - 2x}{5} \leq 1 \] We will break this down into two inequalities. **First inequality:** \[ \frac{3 - 2x}{5} \geq -1 \] Multiplying through by 5: \[ 3 - 2x \geq -5 \] Rearranging gives: \[ 8 \geq 2x \quad \Rightarrow \quad 4 \geq x \quad \Rightarrow \quad x \leq 4 \] **Second inequality:** \[ \frac{3 - 2x}{5} \leq 1 \] Multiplying through by 5: \[ 3 - 2x \leq 5 \] Rearranging gives: \[ -2x \leq 2 \quad \Rightarrow \quad x \geq -1 \] Combining these two results, we find: \[ -1 \leq x \leq 4 \] ### Step 3: Analyze the logarithmic function The function \( \ln(2|x| - 3) \) is defined when its argument is positive: \[ 2|x| - 3 > 0 \] This simplifies to: \[ 2|x| > 3 \quad \Rightarrow \quad |x| > \frac{3}{2} \] This gives us two cases: 1. \( x > \frac{3}{2} \) 2. \( x < -\frac{3}{2} \) ### Step 4: Combine the domains Now we need to combine the domains obtained from each part: 1. From the square root: \( (-\infty, 3] \) 2. From the inverse cosine: \( [-1, 4] \) 3. From the logarithm: \( (-\infty, -\frac{3}{2}) \cup (\frac{3}{2}, \infty) \) **Finding the intersection:** - The intersection of \( (-\infty, 3] \) and \( [-1, 4] \) is \( [-1, 3] \). - The intersection of \( [-1, 3] \) and \( (-\infty, -\frac{3}{2}) \cup (\frac{3}{2}, \infty) \) is: - For \( (-\infty, -\frac{3}{2}) \): The intersection is \( [-1, -\frac{3}{2}) \). - For \( (\frac{3}{2}, \infty) \): The intersection is \( (\frac{3}{2}, 3] \). Thus, the overall domain of the function \( f(x) \) is: \[ [-1, -\frac{3}{2}) \cup \left(\frac{3}{2}, 3\right] \] ### Final Answer: The domain of the function \( f(x) \) is: \[ [-1, -\frac{3}{2}) \cup \left(\frac{3}{2}, 3\right] \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -I|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -2 (Level -II)|12 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|6 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-4|17 Videos

Similar Questions

Explore conceptually related problems

Find the domain of each of the following functions: f(x)=sqrt(x^(3)-3x+2)

Find the domain of defination the following functions. f(x)=arc cos ((2x)/(1+x))

Find the domain of definitions of the following function: f(x)=sqrt(3-2^(x)-2^(1-x))

Find the domain of definition of the following functions : f(x)=sqrt(log_((1)/(2))(2x-3))

Find the domain of definitions of the following functions: f(x)=sqrt(3-2^(X)-2^(1-x))

Find the domain of each of the following function: f(x)=sqrt(1-2x)+3sin^(-1)((3x-1)/2)

Find the domain of the following functions :(i)f(x)=sqrt(2x1)+sqrt(3-2x)

Find the domain of definitions of the following function: f(x)=sqrt(log_(1//4)((5x-x^(2))/4))

Find the domain of defination the following functions. f(x)=(sqrt(1-sin x))/(log_(5) (1-4x^(2))+cos^(-1) (1-{x}) . where {x} is the fractional part of x.

Find the domain of each of the following functions: f(x)=(x^(3)-5x+3)/(x^(2)-1)

MOTION-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise -3
  1. The domain of the function f(x)=sin^(-1)((x-3)/(2))-log(10)(4-x) is

    Text Solution

    |

  2. Find the domain of defination the following functions. f(x)=(sqrt(1...

    Text Solution

    |

  3. Find the domain of defination the following functions. f(x)=sqrt(3-...

    Text Solution

    |

  4. Find the domain of definition the following function: f(x)=(log)(10...

    Text Solution

    |

  5. Find the domain of defination the following functions. f(x)=e^(sin^...

    Text Solution

    |

  6. f(x)=sqrt(sin(cosx))+ln(-2cos^2x+3cosx+1)+e^(cos^- 1)((2sinx+1)/(2sqrt...

    Text Solution

    |

  7. sin^(-1) x+"cosec"^(-1)x at x=-1 is

    Text Solution

    |

  8. Given is a partial graph of an even periodic function f whose period i...

    Text Solution

    |

  9. sin^(-1)(sin.(7pi)/6) is

    Text Solution

    |

  10. tan^(-1)("tan"(2pi)/3)

    Text Solution

    |

  11. Evaluate each of the following cos^(-1) (cos""(5pi)/(4))

    Text Solution

    |

  12. Evaluate each of the following sec^(-1) (sec ""(7pi)/(4))

    Text Solution

    |

  13. Find the value of the following sin^(-1) (sin 5)

    Text Solution

    |

  14. Find the value of the following cos^(-1) (cos 10)

    Text Solution

    |

  15. The value of tan^(-1)tan(-6)is

    Text Solution

    |

  16. Find the value of the following cot^(-1) (tan (-6))

    Text Solution

    |

  17. Find the value of cos^(-1){1/sqrt2(cos((9pi)/10)-sin((9pi)/10))}.

    Text Solution

    |

  18. Find sin^(-1)(sintheta).cos^(-1)(costheta),tan^(-1)(tantheta),cot^(-1)...

    Text Solution

    |

  19. Prove each of the following tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x...

    Text Solution

    |

  20. If -1<x<0,t h e ncos^(-1)x is equal to sec^(-1)1/x (b) pi-sin^(-1)sqr...

    Text Solution

    |