Home
Class 12
MATHS
Find the domain of defination the follow...

Find the domain of defination the following functions.
`f(x)=e^(sin^(-1)(x/2))+tan^(-1) [x/2-1]+ln (sqrt(x-[x]))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = e^{\sin^{-1}(x/2)} + \tan^{-1}(x/2 - 1) + \ln(\sqrt{x - \lfloor x \rfloor}) \), we will analyze each component of the function separately. ### Step 1: Analyze \( e^{\sin^{-1}(x/2)} \) The function \( e^{\sin^{-1}(x/2)} \) is defined for all real numbers because the exponential function is defined for all real values. However, we need to consider the domain of \( \sin^{-1}(x/2) \). The inverse sine function \( \sin^{-1}(y) \) is defined for \( y \) in the range \([-1, 1]\). Therefore, we need: \[ -1 \leq \frac{x}{2} \leq 1 \] Multiplying the entire inequality by 2 gives: \[ -2 \leq x \leq 2 \] ### Step 2: Analyze \( \tan^{-1}(x/2 - 1) \) The function \( \tan^{-1}(y) \) is defined for all real numbers \( y \). Thus, \( \tan^{-1}(x/2 - 1) \) does not impose any additional restrictions on \( x \). ### Step 3: Analyze \( \ln(\sqrt{x - \lfloor x \rfloor}) \) The term \( \sqrt{x - \lfloor x \rfloor} \) represents the square root of the fractional part of \( x \). The fractional part \( x - \lfloor x \rfloor \) is defined as: \[ 0 \leq x - \lfloor x \rfloor < 1 \] For the logarithm \( \ln(y) \) to be defined, we require \( y > 0 \). Therefore, we need: \[ \sqrt{x - \lfloor x \rfloor} > 0 \implies x - \lfloor x \rfloor > 0 \] This means \( x \) cannot be an integer because if \( x \) is an integer, \( x - \lfloor x \rfloor = 0 \). ### Step 4: Combine the Conditions From Step 1, we found that: \[ -2 \leq x \leq 2 \] From Step 3, we determined that \( x \) cannot be an integer. The integers within the interval \([-2, 2]\) are \(-2, -1, 0, 1, 2\). Thus, we exclude these values from the interval: The domain of \( f(x) \) is: \[ [-2, 2] \setminus \{-2, -1, 0, 1, 2\} \] This can be expressed in interval notation as: \[ (-2, -1) \cup (-1, 0) \cup (0, 1) \cup (1, 2) \] ### Final Answer The domain of the function \( f(x) \) is: \[ (-2, -1) \cup (-1, 0) \cup (0, 1) \cup (1, 2) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -I|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -2 (Level -II)|12 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|6 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-4|17 Videos

Similar Questions

Explore conceptually related problems

Find the domain of each of the following function: f(x)=2^(sin^(-1)x)+1/(sqrt(x-2))

Find the domain of definition of the following functions : f(x)=sqrt(log_((1)/(2))(2x-3))

Find the domain of each of the following functions: f(x)=sin^(-1)x^(2) (ii) f(x)=sin^(-1)x+sin x

Find the domain of each of the following function: f(x)=sqrt(1-2x)+3sin^(-1)((3x-1)/2)

Find the domain of defination the following functions. f(x)=sqrt(3-x)+cos^(-1) ((3-2x)/(5))+ln (2|x|-3)

Find the domain of the following functions: f(x)=(1)/(sqrt(x-5))+(x-1)/(x^(2)-4)

Find the domain of each of the following functions: f(x)=1/(log_(10)(1-x))+sqrt(x+2)

find the domain and range of the following functions : f(x)=sqrt(sin^(-1)(log_(2)(x)))

Find the domain of definitions of the following function: f(x)=sqrt(log_(1//4)((5x-x^(2))/4))

Find the domain of defination the following functions. f(x)=(sqrt(1-sin x))/(log_(5) (1-4x^(2))+cos^(-1) (1-{x}) . where {x} is the fractional part of x.

MOTION-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise -3
  1. Find the domain of defination the following functions. f(x)=sqrt(3-...

    Text Solution

    |

  2. Find the domain of definition the following function: f(x)=(log)(10...

    Text Solution

    |

  3. Find the domain of defination the following functions. f(x)=e^(sin^...

    Text Solution

    |

  4. f(x)=sqrt(sin(cosx))+ln(-2cos^2x+3cosx+1)+e^(cos^- 1)((2sinx+1)/(2sqrt...

    Text Solution

    |

  5. sin^(-1) x+"cosec"^(-1)x at x=-1 is

    Text Solution

    |

  6. Given is a partial graph of an even periodic function f whose period i...

    Text Solution

    |

  7. sin^(-1)(sin.(7pi)/6) is

    Text Solution

    |

  8. tan^(-1)("tan"(2pi)/3)

    Text Solution

    |

  9. Evaluate each of the following cos^(-1) (cos""(5pi)/(4))

    Text Solution

    |

  10. Evaluate each of the following sec^(-1) (sec ""(7pi)/(4))

    Text Solution

    |

  11. Find the value of the following sin^(-1) (sin 5)

    Text Solution

    |

  12. Find the value of the following cos^(-1) (cos 10)

    Text Solution

    |

  13. The value of tan^(-1)tan(-6)is

    Text Solution

    |

  14. Find the value of the following cot^(-1) (tan (-6))

    Text Solution

    |

  15. Find the value of cos^(-1){1/sqrt2(cos((9pi)/10)-sin((9pi)/10))}.

    Text Solution

    |

  16. Find sin^(-1)(sintheta).cos^(-1)(costheta),tan^(-1)(tantheta),cot^(-1)...

    Text Solution

    |

  17. Prove each of the following tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x...

    Text Solution

    |

  18. If -1<x<0,t h e ncos^(-1)x is equal to sec^(-1)1/x (b) pi-sin^(-1)sqr...

    Text Solution

    |

  19. Find the value of tan[cos^(-1) (1/2) + tan^(-1) ( - 1/sqrt3)]

    Text Solution

    |

  20. Sin[pi/3-sin^(-1)(-1/2)]

    Text Solution

    |