Home
Class 12
MATHS
Prove each of the following tan^(-1) x...

Prove each of the following
`tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x)/(sqrt(1+x^(2))`
`=-cos^(-1) (1)/(sqrt(1+x^(2))" when "x lt 0`

Answer

Step by step text solution for Prove each of the following tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x)/(sqrt(1+x^(2)) =-cos^(-1) (1)/(sqrt(1+x^(2))" when "x lt 0 by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -I|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -2 (Level -II)|12 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|6 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-4|17 Videos

Similar Questions

Explore conceptually related problems

Prove each of the following relation: cos^(-1)x=sec^(-1)1/x=pi-sin^(-1)sqrt(1-x^(2))=pi+"tan"^(-1)(sqrt(1-x^(2)))/x="cot"^(-1)x/(sqrt(1-x^(2))) when -1ltxlt0

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

Knowledge Check

  • int(tan(cos^(-1)x)+cot(sin^(-1)x))/(sqrt(1-x^(2)))dx=

    A
    `2logx+c`
    B
    `logx+c`
    C
    `-logx+c`
    D
    `-2logx+c`
  • Similar Questions

    Explore conceptually related problems

    Prove the following: cos{tan^(-1){sin(cot^(-1)x)}}=sqrt((1+x^(2))/(2+x^(2)))

    Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

    If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

    Prove the following: tan^(-1)sqrt(x)=(1)/(2)cos^(-1)((1-x)/(1+x)),x in(0,1)

    Prove that sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((x+1)/(sqrt(x^(2)+2x+2)))=tan^(-1)(x^(2)+x+1)

    Prove that sin ^ (- 1) x + cos ^ (- 1) y = (tan ^ (- 1) (xy + sqrt ((1-x ^ (2)) (1-y ^ (2)))) ) / (y sqrt (1-x ^ (2)) - x sqrt (1-y ^ (2)))

    Prove that : (i) tan^(-1) x + cot^(-1)( x+1) = tan^(-1) (x^(2)+x+1) (ii) cot^(-1) 3 + "cosec"^(-1) sqrt(5) = pi/4