Home
Class 12
MATHS
Evaluate int(log(sec^(-1)x)dx)/(xsqrt(x^...

Evaluate `int(log(sec^(-1)x)dx)/(xsqrt(x^(2)-1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{\log(\sec^{-1} x)}{x \sqrt{x^2 - 1}} \, dx, \] we will follow these steps: ### Step 1: Substitution Let \( t = \sec^{-1} x \). Then, the derivative of \( t \) with respect to \( x \) is given by: \[ \frac{dt}{dx} = \frac{1}{x \sqrt{x^2 - 1}} \implies dx = x \sqrt{x^2 - 1} \, dt. \] ### Step 2: Change of Variables Substituting \( t = \sec^{-1} x \) into the integral, we have: \[ I = \int \log(t) \, dt. \] ### Step 3: Integration by Parts To integrate \( \log(t) \), we will use integration by parts. We set: - \( u = \log(t) \) and \( dv = dt \) - Then, \( du = \frac{1}{t} dt \) and \( v = t \) Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du, \] we get: \[ I = t \log(t) - \int t \cdot \frac{1}{t} \, dt = t \log(t) - \int dt. \] ### Step 4: Evaluate the Integral The integral \( \int dt \) is simply \( t \). Therefore, we have: \[ I = t \log(t) - t + C, \] where \( C \) is the constant of integration. ### Step 5: Substitute Back Now we substitute back \( t = \sec^{-1} x \): \[ I = \sec^{-1} x \log(\sec^{-1} x) - \sec^{-1} x + C. \] ### Final Result Thus, the final result for the integral is: \[ I = \sec^{-1} x \log(\sec^{-1} x) - \sec^{-1} x + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MOTION|Exercise ELEMENTARY EXERCISE|41 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 1 (SECTION - A STANDARD INTEGRAL)|8 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos

Similar Questions

Explore conceptually related problems

intlog(sec^-1x)/(xsqrt(x^2-1))dx

Evaluate : int_(1)^(2) (dx)/(xsqrt(x^(2)-1))

int 1/(xsqrt(x^4-1))dx

int(1)/(xsqrt(x-1))dx=

Evaluate: int x^(2)log(1+x)dx

int 1/(xsqrt(x^2-1)) dx =

Evaluate: int log(1+x^(2))dx

Evaluate: (i) int(sec^(2)x)/(sqrt(16+tan^(2)x))dx (ii) int(1)/(x sqrt((log x)^(2)-5))dx

int(dx)/(xsqrt(1-x^(3)))dx=

int (1)/(xsqrt(x))dx