Home
Class 12
MATHS
If I(m"," n)=int cos^(m)x*cos nx dx, sho...

If `I_(m"," n)=int cos^(m)x*cos nx dx`, show that `(m+n)I_(m","n)=cos^(m)x*sin nx+m I_((m-1","n-1))`

Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MOTION|Exercise ELEMENTARY EXERCISE|41 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 1 (SECTION - A STANDARD INTEGRAL)|8 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos

Similar Questions

Explore conceptually related problems

int sin mx cos nxdx,m!=n

sin^(m)x.cos^(n)x

If I_(m,n)=int cos^(m)theta*cos n theta and dd;theta, prove that t(m+n)I_(m,n)-mI_(m-1,n-1)=cos^(m)theta*sin n theta

If I_(m,n)=int cos^(m)x sin nxdx=f(m,n)I_(m-1)-(cos^(m)x cos nx)/(m+n), then f(m,n)=

If I_(m)=int (sin x+cos x)^(m)dx , then show that m l_(m)=(sin x+ cos x)^(m-1)*(sin x- cos x)+2(m-1) I_(m-2)

If l_(n)=int e^(mx)cos^(n)xdx then prove that (m^(2)+n^(2))I_(n)=e^(mx)*(m cos x+n sin x)cos^(n-1)x+n(n-1)l_(n)

if I_(m,n)=int(x^(m))/((log x)^(n))dx, then (m+1)I_(m,n)-nI_(m,n+1) is

If I_(m,n)= int(sinx)^(m)(cosx)^(n) dx then prove that I_(m,n) = ((sinx)^(m+1)(cosx)^(n-1))/(m+n) +(n-1)/(m+n). I_(m,n-2)

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_m-2n(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4w h e nbot hma n dna r ee v e n((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))

If I_(m;n)=int_(0)^((pi)/(2))sin^(m)x cos^(n)xdx then show that I_(m;n)=(m-1)/(m+n)I_(m-2;n) and find I_(m;n) in terms of different combinations of m and n.