Home
Class 12
MATHS
int[sin^2((9pi)/8+x/4)-sin^2((7pi)/8+x/4...

`int[sin^2((9pi)/8+x/4)-sin^2((7pi)/8+x/4)]dx`

Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 1 (SECTION - A STANDARD INTEGRAL)|8 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 1 (SECTION - B INTEGRATION BY SUBSTITUTION)|17 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|6 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos

Similar Questions

Explore conceptually related problems

int[sin^(2)((9 pi)/(8)+(x)/(4))-sin^(2)((7 pi)/(8)+(x)/(4))]dx

Prove that: sin^(4)((pi)/(8))+sin^(4)((3 pi)/(8))+sin^(4)((5 pi)/(8))+sin^(4)((7 pi)/(8))=(3)/(2)

Statement I : sin^2pi/8+sin^2(3pi)/8+sin^2(5pi)/8+sin^2(7pi)/8=2 Statement II cos^2pi/8+cos^2(3pi )/8+cos^2(5pi)/8+cos^2(7pi/8)=2 Statement III: sin^2pi/8+sin^(3pi)/8+sin^2(5pi)/8sin^2 (7pi)/8=3/2

2sin((pi)/8)sin((2pi)/8)sin((3pi)/8)sin((5pi)/8)sin((6pi)/8)sin((7pi)/8) = ?

The value of 2 sin (pi/8) sin((2pi)/8) sin((3pi)/8) sin ((5pi)/8) sin ((6pi)/8) sin((7pi)/8) is :

int_((-pi)/(2))^((pi)/(2))sin^(7)x dx

Prove that: sin^(2)pi/8+sin^(2)(3pi)/(8)+sin^(2)(5pi)/8+sin^(2)(7pi)/8=2