Home
Class 12
MATHS
intsinx.cosx.cos2x.cos4x.cos8x.cos16xdx ...

`intsinx.cosx.cos2x.cos4x.cos8x.cos16xdx ` is equal to

A

`(sin16x)/1024+c`

B

`-(cos32x)/1024+c`

C

`(cos32x)/1096+c`

D

`-(cos32x)/1096+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 1 (SECTION - B INTEGRATION BY SUBSTITUTION)|17 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 1 (SECTION - C INTEGRATION BY PARTS)|8 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise ELEMENTARY EXERCISE|41 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos

Similar Questions

Explore conceptually related problems

The value of int(sinx.cosx.cos2x.cos4x.cos8x.cos16x) dx is equal to

The value of int_( sin )x cos x cos2x cos4x cos8x cos16x)dx is int(sin x cos x cos2x cos4x cos8x cos16x)dx is equal to

int sin x*cos x*cos2x*cos4x*cos8x*cos16xdx=

cos2x-cos8x+cos6x=1

int sin x cos x cos2x cos4xdx

int sin x cos x cos2x cos4xdx

intsinx/cos^5xdx

int(cos2x sin4xdx) is equal to