Home
Class 12
MATHS
The value of int5^(8^(7^(6))). 5^(5^(4))...

The value of `int5^(8^(7^(6))). 5^(5^(4)). 5^(x)`. Is equal to

A

`(5^(5^(x)))/((log5)^(3))+c`

B

`5^(5^(5^(x)))(l n5)^(3)+c`

C

`(5^(5^(5^(x))))/((log5)^(3))+c`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 1 (SECTION - C INTEGRATION BY PARTS)|8 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 1 (SECTION - D INTEGRATION BY PARTIAL FRACCTION)|4 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 1 (SECTION - A STANDARD INTEGRAL)|8 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos

Similar Questions

Explore conceptually related problems

The value of int5^(5^(5^(x))). 5^(5^(x)). 5^(x) Is equal to

int5^(5^(x^(2)))*5^(5^(x))*5^(x)backslash dx is equal to

The value of inte^(x)(x^(5)+5x^(4)+1)dx is

int_5^6(3(5^(-4x)))dx

If (x)/(y)=(6)/(5), then the value of ((6)/(7)-(5x-y)/(5x+y)) is equal to (a) (1)/(7)( b) (2)/(7)(c)(3)/(7) (d) (4)/(7)