Home
Class 12
MATHS
The value of int [f(x)g''(x) - f''(x)g(...

The value of `int [f(x)g''(x) - f''(x)g(x)] dx` is equal to

A

`(f(x))/(g'(x))`

B

`f'(x)g(x)-f(x)g'(x)`

C

`f(x)g'(x)-f'(x)g(x)`

D

`f(x)g'(x)+f'(x)g'(x)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 1 (SECTION - D INTEGRATION BY PARTIAL FRACCTION)|4 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 1 (SECTION - E MISCELLANEOUS SUBSTITUTION)|1 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 1 (SECTION - B INTEGRATION BY SUBSTITUTION)|17 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int[f(x)g'(x)-f'(x)g(x)]dx

Evaluate int[f(x)g^(n)(x)-f^(n)(x)g(x)]dx

If f(x) = sin x +cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} then the value of int_(-pi//4)^(2pi) go f(x) dx is equal to

if int g(x)dx=g(x), then int g(x){f(x)+f'(x)}dx is equal to

int{f(x)g'(x)-f'g(x)}dx equals

The value of int_1^2 {f(g(x))}^(-1)f'(g(x))g'(x) dx , where g(1)=g(2), is equal to

int x{f(x)^(2) g''(x^(2))-f''(x^(2)) g(x^(2))} dx is equal to

If (d)/(dx)f(x)=g(x), then int f(x)g(x)dx is equal to: