Home
Class 12
MATHS
The value of int(dx)/(cosx-sinx) is equa...

The value of `int(dx)/(cosx-sinx)` is equal to -

A

`1/sqrt2log|tan(x/2-pi/8)|+C`

B

`1/sqrt2log|cot(x/2)|+C`

C

`1/sqrt2log|tan(x/2-(3pi)/8)|+C`

D

`1/sqrt2log|tan(x/2+(3pi)/8)|+C`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 2 (LEVEL - I STANDARD INTEGRAL)|3 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 2 (LEVEL - I INTEGRATION BY SUBSTITUTION)|3 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 1 (SECTION - F SOME STANDARD SUBSTITUTIONS)|2 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos

Similar Questions

Explore conceptually related problems

int(1)/(cosx-sinx)dx is equal to

The value of int(cos2x)/(cosx+sinx)dx is

int(dx)/(cosx+sqrt3 sinx)dx is equal to

The value of int_(0)^(2pi)|cosx-sinx|dx is equal to

int(dx)/(sinx-cosx)=

int(dx)/(sinx-cosx+sqrt2) is equal to

inte^(-x)(cosx-sinx)dx=