Home
Class 12
MATHS
If f(x)=int((2sinx-sin2x)/(x^3)dx); x!=0...

If `f(x)=int((2sinx-sin2x)/(x^3)dx); x!=0` then `lim_(x->0) f^'(x)` is:

A

0

B

1

C

2

D

Not defined

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 2 (LEVEL - I STANDARD INTEGRAL)|3 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 2 (LEVEL - I INTEGRATION BY SUBSTITUTION)|3 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 1 (SECTION - F SOME STANDARD SUBSTITUTIONS)|2 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int((2sin x-sin2x)/(x^(3))dx);x!=0 then lim_(x rarr0)f'(x) is: (A) 0(B)oo(C)-1 (D) 1

If f(x) = int(sinx-sin2x)/(x^(3)) dx, where xne0 , then Limit_(xto0) f^(')(x) has the value

f(x) is the integral of (2sin x-sin2x)/(x^(3)),x!=0. Find lim_(x rarr0)f'(x)[wheref'(x)=(df)/(dx)]

f(x)=(sin x-x cos x)/(x^(2)) if x!=0 and f(0)=0 then int_(0)^(1)f(x)dx is

Let f(x)=|cosx x 1 2sinx x2xsinx x x| , then (lim)_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3

If f(x)=int(tan^(3)x-x tan^(2)x)dx Where f(0)=0 and lim_(x rarr0)(f(x))/(x^(m)) is non-zero finite then m=

If f(x) is the integral of (2 sin x-sin 2 x)/(x^(3)), "where x" ne 0, "then find" lim_(x rarr 0) f'(x) .

int(dx)/(x(x^(2)+1)^(3))=(1)/(4(f(x))^(2))+(1)/(2f(x))+(1)/(2)ln((x^(2))/(f(x)))+c then lim_(x rarr0)(f(x))^(1/x) is