Home
Class 12
MATHS
int(dx)/(sqrt(x-x^(2))) equal is :...

`int(dx)/(sqrt(x-x^(2)))` equal is :

A

`2sin^(-1)sqrtx+c`

B

`sin^(-1)(2x-1)+c`

C

`c-2cos^(-1)(2x-1)`

D

`cos^(-1)2sqrt(x-x^(2))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{\sqrt{x - x^2}} \), we can follow these steps: ### Step 1: Rewrite the integrand First, we can rewrite the expression under the square root: \[ x - x^2 = x(1 - x) \] Thus, we have: \[ I = \int \frac{dx}{\sqrt{x(1 - x)}} \] ### Step 2: Simplify the expression Next, we can factor out \( \frac{1}{4} \) from the expression under the square root: \[ \sqrt{x(1 - x)} = \sqrt{\frac{1}{4} - (x - \frac{1}{2})^2} \] This leads us to rewrite the integral as: \[ I = \int \frac{dx}{\sqrt{\frac{1}{4} - (x - \frac{1}{2})^2}} \] ### Step 3: Use substitution Now, we can use the substitution: \[ u = x - \frac{1}{2} \quad \Rightarrow \quad dx = du \] Then the limits change accordingly, and we have: \[ I = \int \frac{du}{\sqrt{\frac{1}{4} - u^2}} \] ### Step 4: Apply the standard integral formula We recognize that this integral matches the standard form: \[ \int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1} \left( \frac{u}{a} \right) + C \] where \( a = \frac{1}{2} \). Thus, we can write: \[ I = \sin^{-1} \left( \frac{u}{\frac{1}{2}} \right) + C \] ### Step 5: Substitute back for \( u \) Substituting back \( u = x - \frac{1}{2} \): \[ I = \sin^{-1} \left( 2\left(x - \frac{1}{2}\right) \right) + C \] This simplifies to: \[ I = \sin^{-1}(2x - 1) + C \] ### Final Answer Thus, the final result for the integral is: \[ I = \sin^{-1}(2x - 1) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 3|35 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 3 (COMPREHENSION)|2 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 2 (LEVEL - II INTEGRATION BY PARTS)|1 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(5x-6-x^(2))) equals

int(dx)/(sqrt(3-5x-x^(2))) equals

int(dx)/(sqrt(x-x^(2))) is equal to

The integral int(dx)/(sqrt(2-3x-x^(2))) is equal to

The value of int(dx)/(sqrt(4x-3-x^(2))) is equal to

int(dx)/(sqrt(2ax-x^(2))) is equal to

What is int(dx)/(sqrt(4+x^(2))) equal to ?

int(dx)/(sqrt(x+x sqrt(x))) equals

int(x^2dx)/(sqrt(x^(3)-2)) equals to

What is int (dx)/(sqrt(4 + x^(2))) equal to ?