Home
Class 12
MATHS
The integral int(sec^(2)x)/((secx+tanx)^...

The integral `int(sec^(2)x)/((secx+tanx)^(9//2))dx` equals
(for some arbitrary constant K)

A

`-(1)/((secx+tanx)^(11//2)){1/11-1/7(secx+tanx)^(2)}+K`

B

`(1)/((secx+tanx)^(11//2)){1/11-1/7(secx+tanx)^(2)}+K`

C

`-(1)/((secx+tanx)^(11//2)){1/11+1/7(secx+tanx)^(2)}+K`

D

`(1)/((secx+tanx)^(11//2)){1/11+1/7(secx+tanx)^(2)}+K`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 4 (LEVEL - I)|10 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos

Similar Questions

Explore conceptually related problems

The integral int(sec^(2)x)/((sec x+tan x)^((9)/(2)))dx equals (for some arbitrary constant K)-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)+(1)/(7)(sec x+tan x)^(2)}+K

The integral int (sec^2x)/(secx+tanx)^(9/2)dx equals to (for some arbitrary constant K ) (A) -1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (B) 1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (C) -1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K (D) 1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K

int(sec^(2)x)/((1+tanx))dx

int(sec^(2)x+1)/(x+tanx)dx

int(secx+tanx)^(2)dx=

int(sec^(2)x)/(sqrt(tanx))dx

int(secx)/(log(secx+tanx))dx=

Integrate : int(sec^(2)x)/(a+b tan x)dx

Integrate: int (secx dx)/(sec x + tan x)