Home
Class 12
MATHS
Prove that cos 18^(@)-sin 18^(@)=sqrt(2)...

Prove that `cos 18^(@)-sin 18^(@)=sqrt(2)sin 27^(@)`

Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC RATIOS & IDENTITIES

    MOTION|Exercise Exercise 1|47 Videos
  • TRIGNOMETRIC RATIOS & IDENTITIES

    MOTION|Exercise Exercise 2(Level -I)|36 Videos
  • THREE DIMENSIONAL GEOMETRY (3 -D)

    MOTION|Exercise SOLVED EXAMPLE|33 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

Prove that: cos18^(@)-sin18^(0)=sqrt(2)sin27^(0)

Prove that: cos18^(@)-sin18^(0)=sqrt(2)sin27^(0)

If cos18^(@)-sin18^(@)=sqrt(x)sin27^(@) , then x=

If cos18^(@)-sin18^(@)=sqrt(n)sin27^(@) , then n=

sin18 ^ (@) =

cos18 ^ (@) - sin18 ^ (@) =

Prove that sin 12^(@) sin18^(@)sin42^(@) sin48^(@) sin 72^(@) sin78^(@)=(cos18^(@))/(32) .

(a) Prove that sin65^(@)+cos65^(@)=sqrt(2)cos 20^(@) (b) Prove that sin47^(@)+cos77^(@)=cos17^(@)

If cos x+sin x=sqrt(2)cos x, prove that that cos x-sin x=sqrt(2)sin x

Prove that: sin65^(@)+cos65^(0)=sqrt(2)cos20^(@)