Home
Class 12
MATHS
Prove that cos 36^(@) cos 72^(@) cos 108...

Prove that `cos 36^(@) cos 72^(@) cos 108^(@) cos 144^(@)=1//16`.

Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC RATIOS & IDENTITIES

    MOTION|Exercise Exercise 1|47 Videos
  • TRIGNOMETRIC RATIOS & IDENTITIES

    MOTION|Exercise Exercise 2(Level -I)|36 Videos
  • THREE DIMENSIONAL GEOMETRY (3 -D)

    MOTION|Exercise SOLVED EXAMPLE|33 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

Prove that: cos36^(@)cos72^(@)cos108^(@)cos144^(@)=(1)/(16)

cos36^(@)-cos72^(@)=

Prove that cos 6^(@) cos 42^(@) cos 66^(@) cos 78^(@) =(1)/(16)

Prove that (1)cos36^(@)cos72^(@)cos108^(@)cos144^(@)=(1)/(16)(2) Show that 4sin27^(@)=sqrt(5+sqrt(5))-sqrt(3-sqrt(5))

Prove that cos36^(@)cos72^(0)cos108^(0)cos144^(0)=(1)/(16)

cos 10^(@) cos 30^(@) cos 50^(@) cos 70^(@) =(3)/(16)

Prove that cos 20^(@)cos40^(@)cos60^(@)cos80^(@)=(1)/(16)