Home
Class 12
MATHS
If alpha in [(pi)/(2),pi] then the value...

If `alpha in [(pi)/(2),pi]` then the value of
`sqrt(1+ sin alpha)-sqrt(1 - sin alpha)` is equal to

A

`cos theta`

B

`sin theta`

C

`2 cos theta`

D

`2 sin theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( \sqrt{1 + \sin \alpha} - \sqrt{1 - \sin \alpha} \) given that \( \alpha \) is in the interval \( \left[\frac{\pi}{2}, \pi\right] \). ### Step-by-Step Solution: 1. **Start with the expression:** \[ \sqrt{1 + \sin \alpha} - \sqrt{1 - \sin \alpha} \] 2. **Rationalize the expression:** To simplify this, we can multiply and divide by the conjugate: \[ \frac{(\sqrt{1 + \sin \alpha} - \sqrt{1 - \sin \alpha})(\sqrt{1 + \sin \alpha} + \sqrt{1 - \sin \alpha})}{\sqrt{1 + \sin \alpha} + \sqrt{1 - \sin \alpha}} \] This gives us: \[ \frac{(1 + \sin \alpha) - (1 - \sin \alpha)}{\sqrt{1 + \sin \alpha} + \sqrt{1 - \sin \alpha}} \] 3. **Simplify the numerator:** The numerator simplifies to: \[ 1 + \sin \alpha - 1 + \sin \alpha = 2 \sin \alpha \] So, we have: \[ \frac{2 \sin \alpha}{\sqrt{1 + \sin \alpha} + \sqrt{1 - \sin \alpha}} \] 4. **Substituting values for \( \alpha \):** Since \( \alpha \) is in the interval \( \left[\frac{\pi}{2}, \pi\right] \), we know that \( \sin \alpha \) will be in the range \( [1, 0] \). 5. **Evaluate the denominator:** - When \( \alpha = \frac{\pi}{2} \), \( \sin \alpha = 1 \): \[ \sqrt{1 + \sin \alpha} = \sqrt{2}, \quad \sqrt{1 - \sin \alpha} = 0 \] Thus, the denominator becomes \( \sqrt{2} + 0 = \sqrt{2} \). - When \( \alpha = \pi \), \( \sin \alpha = 0 \): \[ \sqrt{1 + \sin \alpha} = 1, \quad \sqrt{1 - \sin \alpha} = 1 \] Thus, the denominator becomes \( 1 + 1 = 2 \). 6. **Final expression:** Therefore, the expression simplifies to: \[ \frac{2 \sin \alpha}{\sqrt{1 + \sin \alpha} + \sqrt{1 - \sin \alpha}} \] For \( \alpha = \frac{\pi}{2} \): \[ \frac{2 \cdot 1}{\sqrt{2}} = \sqrt{2} \] For \( \alpha = \pi \): \[ \frac{2 \cdot 0}{2} = 0 \] 7. **Conclusion:** The value of \( \sqrt{1 + \sin \alpha} - \sqrt{1 - \sin \alpha} \) varies between \( \sqrt{2} \) and \( 0 \) as \( \alpha \) varies from \( \frac{\pi}{2} \) to \( \pi \). ### Final Answer: The value of \( \sqrt{1 + \sin \alpha} - \sqrt{1 - \sin \alpha} \) is \( 2 \cos \left(\frac{\alpha}{2}\right) \).
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC RATIOS & IDENTITIES

    MOTION|Exercise Exercise -2(Level -II)|12 Videos
  • TRIGNOMETRIC RATIOS & IDENTITIES

    MOTION|Exercise Exercise -3|39 Videos
  • TRIGNOMETRIC RATIOS & IDENTITIES

    MOTION|Exercise Exercise 1|47 Videos
  • THREE DIMENSIONAL GEOMETRY (3 -D)

    MOTION|Exercise SOLVED EXAMPLE|33 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

If alpha=(pi)/(17), then the value of (sin21 alpha-sin alpha)/(sin16 alpha+sin4 alpha) is equal to

If (2 sin alpha)/(1 + cos alpha + sin alpha) = 3/4 , then the value of (1 + cos alpha + sinalpha)/(1 + sin alpha) is equal to

If alpha in(-(3 pi)/(2),-pi), then the value of tan^(-1)(cot alpha)-cot^(-1)(tan alpha)+sin^(-1)(sin alpha)+cos^(-1)(cot alpha) is equal to (a)2 pi+alpha(b)pi+alpha(c)0(d)pi-alpha

If 4sin alpha cos alpha-8sin^(3)alpha cos alpha=(sqrt(3))/(2) and 8cos^(4)alpha-8cos^(2)alpha+1=(-1)/(2), where alpha in(0,(pi)/(2)) Then the value of log_(cos((a)/(2)))((sin alpha+cos alpha)/(sqrt(2))) is equal to

(sqrt(2)-sin alpha-cos alpha)/(sin alpha-cos alpha) is equal to

If pi

Givent that (pi)/(2)

MOTION-TRIGNOMETRIC RATIOS & IDENTITIES -Exercise 2(Level -I)
  1. The value of (1-tan^2 1 5^(@))/(1+tan^2 1 5^(@)) is

    Text Solution

    |

  2. IF tan^2 theta=2 tan^2 phi +1 then find the value of cos 2 theta+sin^2...

    Text Solution

    |

  3. If alpha in [(pi)/(2),pi] then the value of sqrt(1+ sin alpha)-sqrt(...

    Text Solution

    |

  4. sqrt(2+sqrt(2+2cos 4 theta)), forall 0 lt theta lt pi//4 is

    Text Solution

    |

  5. The value of tan (pi/16)+2tan(pi/8)+4 is equal to

    Text Solution

    |

  6. If A=tan6^(@) tan 42^(@) and B= cot 66^(@)cot 78^(@) then-

    Text Solution

    |

  7. The value of 64sqrt(3)sin(pi/48)cos(pi/48)cos(pi/24)cos(pi/12)cos(pi/6...

    Text Solution

    |

  8. Let a and b be positive number not equal to 1 and (3pi)/(2) lt theta ...

    Text Solution

    |

  9. f(theta)=sin^4theta+cos^2theta then range of f(theta)

    Text Solution

    |

  10. The value of cos(pi/19)+cos((3pi)/19)+cos((5pi)/19)+......+cos((17pi)/...

    Text Solution

    |

  11. Value of cos(pi/(2n+1))+cos((3pi)/(2n+1))+cos((5pi)/(2n+1))+... upto ...

    Text Solution

    |

  12. A regular hexagon & a regular dodecagon are inscribed in the same circ...

    Text Solution

    |

  13. in any triangle ABC, which is not right angled Sigma cosA.cosecB.cosec...

    Text Solution

    |

  14. If 3 cos x + 2 cos 3x = cos y, 3 sin x + 2 sin 3x = sin y, then the va...

    Text Solution

    |

  15. of 0 < x < 90^@ and cosx=3/sqrt10 then the value of log10 sinx+log10 c...

    Text Solution

    |

  16. if tantheta=1/(2+(1/(2+1/(2+...oo)))) then find possible values of the...

    Text Solution

    |

  17. If (sinA)/(sinB)=(sqrt(3))/(2) and (cosA)/(cosB)=(sqrt(5))/(2) , 0 lt...

    Text Solution

    |

  18. If 2 cos x +sin x=1 then value of 7 cos x + 6 sin x lis equal to

    Text Solution

    |

  19. Let f(x) denote the sum of the infinite trigonometric series f(x)=unde...

    Text Solution

    |

  20. If tan A & tan B are the roots of the quadratic equation x^2 - ax +...

    Text Solution

    |