Home
Class 12
MATHS
If the sides of a right angled triangle ...

If the sides of a right angled triangle are
`{cos 2 alpha + cos 2 beta + 2 cos (alpha+beta)}` and
`{sin 2 alpha+sin 2 beta + 2 sin (alpha+beta)}` then the length of the hypotneuse is

A

`2[1+cos (alpha-beta)]`

B

`2[1-cos(alpha-beta)]`

C

`4 cos^(2) ((alpha-beta)/2)`

D

`4 sin^(2) ((alpha+beta)/2)`

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC RATIOS & IDENTITIES

    MOTION|Exercise Exercise -3|39 Videos
  • TRIGNOMETRIC RATIOS & IDENTITIES

    MOTION|Exercise Exercise -4(Level -I)|7 Videos
  • TRIGNOMETRIC RATIOS & IDENTITIES

    MOTION|Exercise Exercise 2(Level -I)|36 Videos
  • THREE DIMENSIONAL GEOMETRY (3 -D)

    MOTION|Exercise SOLVED EXAMPLE|33 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

If the sides of two sides of a right angled triangle are (cos2 alpha+cos2 beta+2cos(alpha+beta)) and (sin2 alpha+sin2 beta+2sin(alpha+beta)) then find the hypotenuse

What is sin (alpha+beta) - 2 sin alpha cos beta + sin(alpha- beta) =

If cos(alpha+beta)=0 then sin^(2)alpha+sin^(2)beta

The value of sin^2 alpha cos^2 beta + cos^2 alpha sin^2 beta + sin^2 alpha sin^2 beta +cos^2 alpha cos^2 beta is

(cos alpha + cos beta)/( sin alpha - sin beta) + (sin alpha + sin beta)/( cos alpha - cos beta ) =

(cos alpha + cos beta) ^ (2) + (sin alpha + sin beta) ^ (2) =