Home
Class 12
MATHS
If tan x= (2b)/(a-c), a!=c, y = a cos^2 ...

If `tan x= (2b)/(a-c), a!=c, y = a cos^2 x +2b sin x*cos x + c sin^2x, z = a sin^2 x-2b sin x*cos x + c cos^2x,` then

A

y=z

B

y+ z =a+c

C

y-z=a-c

D

`y-z=(a-c)^(2)+4b^(2)`

Text Solution

Verified by Experts

The correct Answer is:
B, C
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC RATIOS & IDENTITIES

    MOTION|Exercise Exercise -3|39 Videos
  • TRIGNOMETRIC RATIOS & IDENTITIES

    MOTION|Exercise Exercise -4(Level -I)|7 Videos
  • TRIGNOMETRIC RATIOS & IDENTITIES

    MOTION|Exercise Exercise 2(Level -I)|36 Videos
  • THREE DIMENSIONAL GEOMETRY (3 -D)

    MOTION|Exercise SOLVED EXAMPLE|33 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

If quad tan x=(2b)/(a-c),a!=c,y=a cos^(2)x+2b sin x*cos x+c sin^(2)x,z=a sin^(2)x-2b sin x*cos x+c cos^(2)x, then

If tan x=(2b)/(a-c),y=a cos^(2)x+2b sin x cos x+c sin^(2)xz=a sin^(2)x-2b sin x cos x+c cos^(2)x, that y-z=a-c.

Prove that (cos x + sin x)/(cos x - sin x) - (cos x - sin x)/(cos x + sin x) = 2 tan x

(cos 4x sin 3x -cos 2x sin x )/(sin 4x sin x+ cos 6x cos x)= tan 2x

2tan2x = (cos x + sin x) / (cos x-sin x) - (cos x-sin x) / (cos x + sin x)

If y=ae^(2x)+b cos 2x+c sin 2x, then

Find the maximum and minimum value of y=a sin^(2)x+b sin x*cos x+c cos^(2)x