Home
Class 12
MATHS
Prove thatint0^(pi/4) 2tan^3xdx=1-log2...

Prove that`int_0^(pi/4) 2tan^3xdx=1-log2`

Text Solution

Verified by Experts

`=int_0^(pi/4) 2tanx.tan^2xdx`
`=int_0^(pi/4) 2tanx(sec^2x−1)`
`=int_0^(pi/4)2tanxsec^2xdx−int_0^(pi/4) 2tanx.dx`
`=2(2tan^2x)/2∣−2logsecx∣`
`=1−2(logsqrt(2) −2log1)`
`=1−log2`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.3|24 Videos
  • INTEGRALS

    NCERT|Exercise SOLVED EXAMPLES|46 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.5|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/4) tan^3xdx

int_0^(pi/4) 2 tan^3 x dx=1-log 2

int_0^(pi//4) 2 tan^3 x dx=1-log 2

int_(0)^((pi)/(4))2tan^(3)xdx=1-log2

int_(0)^(pi//4)2tan^(3)xdx

int_0^(pi/4) tan^3xsec^2xdx

int_(0)^( pi/3)tan xdx

int_(0)^( pi) tan xdx

int_0^(pi/2)sin^2xdx =

int_0^(pi/2) sinxcos^3xdx