Home
Class 9
MATHS
If n be any positive integer (even or od...

If n be any positive integer (even or odd), prove that (x - y) is a factor of the polynomial `x^(n)-y^(n)`.

Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-1.1|57 Videos
  • POLYNOMIALS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-1.2|45 Videos
  • LOGARITHM

    CALCUTTA BOOK HOUSE|Exercise Exercise - 7 (Long-answer type questions)|49 Videos
  • PROBABILITY

    CALCUTTA BOOK HOUSE|Exercise EXERCISE - 2|16 Videos

Similar Questions

Explore conceptually related problems

(x + a) will be a factor of the polynomial p(x)=x^(n)+a^(n) , when-

If n be an odd negative integer, then prove that (x + 1) is a polynomial of degree (x^(n)+1) .

If n be a positive integer greater than 1, prove that (frac(n+1)(2))^n > n

If n is a positive integer, prove that |I m(z^n)|lt=n|I m(z)||z|^(n-1.)

If n is an odd positive integer then intabs(x^n) dx is equal to

It is given that n is an odd integer greater than 3 but n is not multiple of 3. prove that (x^(3)+x^(2)+x) is a factor of (1+x)^(n)-x^(n)-1 .

If a and b are distinct integers,Using Mathematical Induction prove that a - b is a factor of a^n-b^n , whenever n is a positive integer.

If n be a positive integer and the sums of the odd terms ans even terms in the expansion of (a+x)^(n) be A and B repectively prove that , 4AB=(a+x)^(2n)-(a-x)^(2n)

If n be a positive integer and the sums of the odd terms ans even terms in the expansion of (a+x)^(n) be A and B repectively prove that , A^(2)-B^(2)=(a^(2)-x^(2))^(n)

If n is an odd integer, prove that n^(2) is also an odd integer.

CALCUTTA BOOK HOUSE-POLYNOMIALS-EXERCISE-1.4
  1. If n be any positive integer (even or odd), prove that (x - y) is a fa...

    Text Solution

    |

  2. If p(x) be a polynomial such that p(-a/b)=0, then one of the factor of...

    Text Solution

    |

  3. If the polynomial f(x)=2x^(3)+kx^(2)+11x+k+3 be divisible by (2x - 1),...

    Text Solution

    |

  4. If (x - a) be a factor of f(x), but is not a factor of g(x), where bot...

    Text Solution

    |

  5. If (x^(2)-1) be a factor of the polynomial f(x)=ax^(4)+bx^(3)+cx^(2)+d...

    Text Solution

    |

  6. (x + a) will be a factor of the polynomial p(x)=x^(n)+a^(n), when-

    Text Solution

    |

  7. If x be a factor of the polynomial f(x) = (x - a) (x + b) (x - c), the...

    Text Solution

    |

  8. If (x+sqrt11) be a factor of f(x)=x^(3)+k, then k =

    Text Solution

    |

  9. If (x^(2)+r) be a factor of the polynomial f(x)=x^(3)-rx^(2)+rx-r^(2),...

    Text Solution

    |

  10. If f(x)=2x^(3)+9x^(2)+x+k and g(x) = x -1 be two polynomials, then g(x...

    Text Solution

    |

  11. Which one of the followings is a factor of the polynomial p(x)=x^(4)-1...

    Text Solution

    |

  12. Find the value of a if (1 - 2x) is a factor of the polynomial (2x^(4)-...

    Text Solution

    |

  13. Find the value of k if (x - 2) is a factor of the polynomial (2x^(5)-6...

    Text Solution

    |

  14. If (x + 1) be a factor of the polynomial (x^(43)+kx+2), determine the ...

    Text Solution

    |

  15. If (x + 1) be a factor of the polynomial (x^(200)+2x^(201)+k), then de...

    Text Solution

    |

  16. If n be an odd negative integer, then prove that (x + 1) is a polynomi...

    Text Solution

    |

  17. Prove that the polynomial (x^(5)-y^(5)) is not divisible be (x + y).

    Text Solution

    |

  18. Is the polynomial (x^(101)+1) divisible by (x + 1) ? Give reasons in f...

    Text Solution

    |

  19. Examine whether (x + y) is a factor of the polynomial (x^(11)+y^(11)) ...

    Text Solution

    |

  20. If (x + 2y) be a factor of the polynomial (x^(2)+4xy+4y^(2)), find the...

    Text Solution

    |

  21. If (x-sqrt11) be a factor of the polynomial of f(x), but not a factor ...

    Text Solution

    |