Home
Class 9
MATHS
If h(x)=(x^(3)-a^(3))/(x-a), then find h...

If `h(x)=(x^(3)-a^(3))/(x-a)`, then find h(a).

Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-1.3|36 Videos
  • POLYNOMIALS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-1.4|52 Videos
  • POLYNOMIALS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-1.1|57 Videos
  • LOGARITHM

    CALCUTTA BOOK HOUSE|Exercise Exercise - 7 (Long-answer type questions)|49 Videos
  • PROBABILITY

    CALCUTTA BOOK HOUSE|Exercise EXERCISE - 2|16 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(1)/(x) , then find the value of theta in the mean value theorem f(x+h)=f(x)+hf'(x+theta h), 0 lt theta lt 1 .

In the following Lagrange's mean value theorem, f(a+h)-f(a)=hf'(a+theta h), 0 lt theta lt 1 If f(x)=(1)/(3) x^(3)-(3)/(2) x^(2)+2x, a=0 and h=3 " find " theta .

If h(x)=[f(x)]^(2)+[g(x)]^(2) and f'(x)=g(x), f''(x)=-f(x) , h(5)=10 find h(10).

If f(x)=2/(x-3),g(x)=(x-3)/(x+4) , and h(x)=-(2(2x+1))/(x^2+x-12) then lim_(x->3)[f(x)+g(x)+h(x)] is (a) -2 (b) -1 (c) -2/7 (d) 0

Graph of y=f(x) and y=g(x) is given in the following figure. If h(x)= f(g(x)) , then find the value of h'(2) .

If f(x)=1/(4x^(2)) , then proved that (f(x-h)-f(x+h))/h=x/((x^(2)-h^(2))^(2))

If f(x) = e^(x + a) , g(x) = x^(b^2) and h(x) = e^(b^2 x) , then find the value of (g{f(x)})/(h(x))

If f(x)=Ax^(2)+Bx+C and A ne 0 then find the value of theta in Lagrange's mean value theorem, f(x+h)=f(x)+h f'(x+theta h) .

If fa n dg are two distinct linear functions defined on R such that they map {-1,1] onto [0,2] and h : R-{-1,0,1}vecR defined by h(x)=(f(x))/(g(x)), then show that |h(h(x))+h(h(1/x))|> 2.

If f: R^+ to R , f(x) + 3x f(1/x)= 2(x+1),t h e n find f(x)