Home
Class 9
MATHS
a+b+c=8,abc=8andab+bc+ca=10 the determin...

`a+b+c=8,abc=8andab+bc+ca=10` the determine the value of `a^(3)+b^(3)+c^(3)`

Text Solution

Verified by Experts

The correct Answer is:
296 , it is the required value
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    CALCUTTA BOOK HOUSE|Exercise EXERCISE 2.1|30 Videos
  • FACTORISATION

    CALCUTTA BOOK HOUSE|Exercise EXERCISE 2.2 (A Factorise the following polynomials )|5 Videos
  • FACTORISATION

    CALCUTTA BOOK HOUSE|Exercise EXAMPLES (MCQ)|7 Videos
  • DISTANCE FORMULAS

    CALCUTTA BOOK HOUSE|Exercise Long answer|11 Videos
  • FREQUENCY DISTRIBUTIONS OF GROUPED DATA

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-1 (LONG TYPE ANSWER QUESTION)|14 Videos

Similar Questions

Explore conceptually related problems

If a + b + c = 8 and ab + bc + ca = 11 , then find the value of a^(3)+b^(3)+c^(3)-3abc

If a = b = c = 99999 , then find the value of (a^(3)+b^(3)+c^(3)-3abc)

If a + b + c = 0 , then prove that a^(3)+b^(3)+c^(3)=3abc

If a = 1 , b = 2 , c = 3 , then find then value of (2a^(2)+2b^(2)+2c^(2)-ab-bc-ca)/(a^(3)+b^(3)+c^(3)-3abc)

1+b^(3)+8c^(3)-6bc

In triangle ABC, if a^(2) + b^(2) +c^(2) -bc -ca -ab=0, then the value of sin ^(2)A+ sin ^(2)B+sin ^(2)C is -

If a+b+c=10,a^(2)+b^(2)+c^(2)=38 and a^(3)+b^(3)+c^(3)=160 then find the value of 3abc.

If a, b and c are three positive real numbers, then show that a^3 + b^3 + c^3 > 3abc .

If a, b, c are positive number satisfying 4ab + 6bc + 8ca = 9, then find the greatest value of (abc).

Fractorise a ^(3) - 8b ^(3) - 64 c^(3) - 24 abc