Home
Class 12
MATHS
int(dx)/(sqrt(9x-4x^2))equals(A) 1/9sin^...

`int(dx)/(sqrt(9x-4x^2))`equals(A) `1/9sin^(-1)((9x-8)/8)+C` (B) `1/2sin^(-1)((8x-9)/9)+C`(C) `1/3sin^(-1)((9x-8)/8)+C` (D) `1/2sin^(-1)((9x-8)/9)+C`

Text Solution

AI Generated Solution

To solve the integral \( \int \frac{dx}{\sqrt{9x - 4x^2}} \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{dx}{\sqrt{9x - 4x^2}} \] We can factor out the expression under the square root: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.2|39 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(9x-4x^(2)))dx is equal to

int(dx)/(9x^2-8)=

int(1)/(x^(4)+8x^(2)+9)

int(x^8dx)/((1+x^(9)))

int(2x+1)/(8-6x-9x^2)dx=

int(cosx)/(sqrt(9sin^(2)x-1))dx

IF (dx)/(sqrt(16-9x^(2)))=A sin^(-1) (bx )+c then A+B=

(9pi)/(8)-(9)/(4)sin^(-1)""(1)/(3)=(9)/(4)sin^(-1)\ (2sqrt(2))/(3)

Prove the following: (9)/(8)-(9)/(4)sin^(-1)((1)/(3))=(9)/(4)sin^(-1)((2sqrt(2))/(3))

Prove that: (9 pi)/(8)-(9)/(4)sin^(-1)(1)/(3)=(9)/(4)sin^(-1)(2sqrt(2))/(3)