Home
Class 12
MATHS
Find the integrals of the functions cos...

Find the integrals of the functions `cos2xcos4xcos6x`

Text Solution

Verified by Experts

Given,`∫cos2xcos4xcos6xdx`
As `cos2xcos4x=1/2*(cos6x+cos2x)dx`
[by using property that cos A cos B=cos(A+B)/2+cos(A-B)/2]
so the equation becomes
`∫cos2xcos4xcos6xdx`
=`∫1/2*(cos6x+cos2x)cos6xdx`
=`1/2∫(cos6x+cos2x)cos6xdx`
=`1/2∫(cos6x.cos6x+cos2x.cos6x)dx`
As=`∫cos6x.cos6x=1/2[cos(12x)+1]dx`
...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise SOLVED EXAMPLES|46 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.1|22 Videos
  • INTEGRALS

    NCERT|Exercise MISCELLANEOUS EXERCISE|44 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

Integrate the functions cos 2x cos 4x cos 6x

intcos2xcos4xdx

int cosx cos2xcos3x dx=

intsinxcosxcos2xcos4xdx

Evaluate the following integrals: intcos2xcos4xcos6xdx

inte^(x)sinxcosxcos2xcos4xdx

intsin^3 2xcos^4 2xdx

Integrate the functions (2cos x-3sin x)/(6cos x+4sin x)

Find the derivative of sin x.cos x