Home
Class 12
MATHS
If f(a+b-x)=f(x), then inta bf(x)dxis e...

If `f(a+b-x)=f(x)`, then `inta bf(x)dx`is equal to(A) `(a+b)/2inta bf(b-x)dx` (B) `(a+b)/2inta bf(b+x)dx`(C) `(b-a)/2inta bf(x)dx` (D) `(a+b)/2inta bf(x)dx`

Text Solution

Verified by Experts

Given` f(a + b - x) = f(x)`
⇒`a+b−x=x`
⇒`x=(a+b)/2​`
Let` I=∫_a^babf(x)dx =(a+b)/2∫_a^babf(x)dx`
Hence option D is correct
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.3|24 Videos
  • INTEGRALS

    NCERT|Exercise SOLVED EXAMPLES|46 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.5|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

If f(a+b-x)=f(x) , then int_a^b x f(x)dx is equal to (A) (a-b)/2int_a^b f(a+b-x)dx (B) (a+b)/2int_a^b f(b-x)dx (C) (a+b)/2int_a^b f(x)dx (D) (b-a)/2int_a^b f(x)dx

If (2a+2b-x)=f(x), then int_(2a)^(2b)xf(x)dx is equal to

If f(a+b-x)=f(x),\ t h e n\ int_a^b xf(x)dx is equal to (a+b)/2int_a^bf(b-x)dx b. (a+b)/2int_a^bf(b+x)dx c. (b-1)/2int_a^bf(x)dx d. (a+b)/2int_a^bf(x)dx

If f(a+b-x0=f(x) , then prove that int_a^b xf(x)dx=((a+b)/2)int_a^bf(x)dxdot

If f(a+b-x)=f(x),\ then prove that \ int_a^b xf(x)dx=(a+b)/2int_a^bf(x)dx

If f(a+b-x)=f(x), then prove that int_(a)^(b)xf(x)dx=(a+b)/(2)int_(a)^(b)f(x)dx

IF 0 lt a lt b then int_a^b |x|/x dx is equal to

What is int_a^b (log x)/x dx equal to

int_a^b logx/xdx