Home
Class 12
MATHS
Consider three matrices A=[(3,1),(6,1)],...

Consider three matrices `A=[(3,1),(6,1)],B=[(3,4),(2,3)]` and `C=[(3,-4),(-2,3)]` then the value of `tr(A)+tr((ABC)/2)+tr((A(BC)^(2))/4)+tr((A(BC)^(3))/8)+`…………..

A

8

B

16

C

128

D

256

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A MCQ (ALGEBRA OF MATRICES)|135 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B MCQ (DETERMINANTS)|189 Videos
  • MATHEMATICAL REASONING [APPENDIX - 4]

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise|150 Videos
  • MEASURES OF DISPERSION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE-2 ( SET -4)|2 Videos

Similar Questions

Explore conceptually related problems

If A=[(3,0),(-4,-1)]B=[(3,5,-7),(0,-1,8)]C=[(6),(-1),(0)] then ABC=

If A=[(1,1,1),(2,4,1),(2,3,1)],B=[(2,3),(3,4)] then the matrix BA is

If A+2B=[(1,2,0),(6,-3,3),(-5,3,1)] and 2A-B=[(2,-1,5),(2,-1,6),(0,1,2)] then tr(A)-tr(B)=

If A=[(1,-2,3),(-4,2,5)],B=[(1,3),(-1,0),(2,4)] then 2A+3B'=

If A=[(1,1,-1),(2,0,3),(3,-1,2)],B=[(1,3),(0,2),(-1,4)] and C=[(1,2,3,-4),(2,0,-2,1)] , find A(BC), (AB)C and show that (AB)C=A(BC) .

If the matrix A=[(1,2,3,0),(2,4,3,2),(3,2,1,3),(6,8,7,alpha)] is of rank 3, then alpha=

If A = [[1,4],[2,8]] , B = [[3,2],[1,3]] then AB=

If A=[(1,2,-3),(5,0,2),(1,-1,1)],B=[(3,-1,2),(4,2,5),(2,0,3)] and C=[(4,1,2),(0,3,2),(1,-2,3)] , then compute (A+B) and (B-C) . Also, verify that A+(B-C)=(A+B)-C .

If A = (3, 2, 5), B = (3, 3, 5) and C = (3, 4, 8) are the vertices of a triangle ABC, then its centroid is