Home
Class 12
MATHS
Given f(x)=log(10)x and g(x)=e^(piix), i...

Given `f(x)=log_(10)x` and `g(x)=e^(piix)`, if `theta(x)=|(f(x)g(x),[ f(x)]^(g(x)),1),(f(x^(2))g(x^(2)),[f(x^(2))]^(g(x^(2))),0),(f(x^(3))g(x^(3)),[f(x^(3))]^(g(x^(3))),1)|`, then the value of `theta(10)` is

A

1

B

2

C

0

D

-1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A MCQ (ALGEBRA OF MATRICES)|135 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B MCQ (DETERMINANTS)|189 Videos
  • MATHEMATICAL REASONING [APPENDIX - 4]

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise|150 Videos
  • MEASURES OF DISPERSION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE-2 ( SET -4)|2 Videos

Similar Questions

Explore conceptually related problems

phi(x) = f(x)g(x) and f'(x)g'(x) = k , then (2k)/(f(x)g(x)) =

int(f(x)g'(x)-f'(x)g(x))/(f(x)g(x)) [ log (g(x))-log(f(x))]dx=

int_(ln lambda)^(ln(1/lambda))(f(x^(2)/3)(f(x)+f(-x)))/(g(3x^(2))(g(x)-g(-x)))dx=

If the function f(x) = x^3 + e^(x/2) and g(x) =f^-1(x) , then the value of g'(1) is

If g(x) =1+sqrt(x) and f(g(x)) =3+2sqrt(x)+x , then f(x)=

If f(x)=1+1//x, g(x)=sqrt(1-x^(2)) , then the domain of f(x)-g(x) is

If f(x) =|x-2| and g(x) = f(f(x)) , then for x gt 20, g(x) =