Home
Class 12
MATHS
If A=[(1,3),(2,1)] then the determinant ...

If `A=[(1,3),(2,1)]` then the determinant of `A^(2)-2A` is

A

5

B

25

C

-5

D

-25

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C MCQ (INVERSE MATRIX)|88 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D MCQ (LINEAR EQUATIONS)|53 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A MCQ (ALGEBRA OF MATRICES)|135 Videos
  • MATHEMATICAL REASONING [APPENDIX - 4]

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise|150 Videos
  • MEASURES OF DISPERSION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE-2 ( SET -4)|2 Videos

Similar Questions

Explore conceptually related problems

A=[(-4,-1),(3,1)] then the determinant of the matrix (A^(2016)-2.A^(2-15)-A^(2014)) is

If A=[(1,1,1),(1,2,-3),(2,-1,3)] then AdjA=

If A,B,C are the values of the determinants |(0,1,1),(1,0,1),(1,1,0)|,|(1,4,2),(2,-1,4),(-3,7,6)|,|(2,-1,4),(4,-3,1),(1,2,1)| then the ascending order of A,B,C is

If A = [(1,2,3),(3,2,1)] and B = [(3,2,1),(1,2,3)] , find 3B - 2A .

If A=[(1,1,1),(2,4,1),(2,3,1)],B=[(2,3),(3,4)] then the matrix BA is

IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] then show that adj A=3A^T . Also find A^-1 .

IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] then show that adjA=3A^T Also find A^-1