Home
Class 12
MATHS
|(1//a,a^(2),bc),(1//b,b^(2),ca),(1//c,c...

`|(1//a,a^(2),bc),(1//b,b^(2),ca),(1//c,c^(2),ab)|=`

A

0

B

1

C

`abc`

D

`(a-b)(b-c)(c-a)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C MCQ (INVERSE MATRIX)|88 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D MCQ (LINEAR EQUATIONS)|53 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A MCQ (ALGEBRA OF MATRICES)|135 Videos
  • MATHEMATICAL REASONING [APPENDIX - 4]

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise|150 Videos
  • MEASURES OF DISPERSION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE-2 ( SET -4)|2 Videos

Similar Questions

Explore conceptually related problems

Without expanding the determinant, prove that (i) |{:(a,a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=|{:(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3)):}| (ii) |{:(ax,by,cz),(x^(2),y^(2),z^(2)),(1,1,1):}|=|{:(a,b,c),(x,y,z),(yz,zx,xy):}| (iii) |{:(1,bc,b+c),(1,ca,c+a),(1,ab,a+b):}|=|{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|

|(1,a,a^(2)+bc),(1,b,b^(2)+ac),(1,c,c^(2)+ab)|=k(a-b),(b-c), (c-a) then k =

Without expanding the determinant, prove that {:[( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) ]:} ={:[( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) ]:}

|(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1)|=

Without expanding the determinant , prove that |{:(a,a^2,bc),(b,b^2,ca),(c,c^2,ab):}|=|{:(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3):}|

If bc+ca+ab=18 , and |(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3))|=lambda|(1,1,1),(a,b,c),(a^(2),b^(2),c^(2))| the value of lambda is

|(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab)|=

If Delta_(1)=|(1,a,bc),(1,b,ca),(1,c,ab)|,Delta_(2)=|(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))| then

|((b+c)^(2),a^(2),bc),((c+a)^(2),b^(2),ca),((a+b)^(2),c^(2),ab)|=

If A=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))], B=[(0,c,-b),(-c,0,a),(b,-a,0)] then AB=