Home
Class 12
MATHS
|(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c...

`|(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))|=`

A

`a^(2)b^(2)c^(2)`

B

`2a^(2)b^(2)c^(2)`

C

`3a^(2)b^(2)c^(2)`

D

`4a^(2)b^(2)c^(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C MCQ (INVERSE MATRIX)|88 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D MCQ (LINEAR EQUATIONS)|53 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A MCQ (ALGEBRA OF MATRICES)|135 Videos
  • MATHEMATICAL REASONING [APPENDIX - 4]

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise|150 Videos
  • MEASURES OF DISPERSION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE-2 ( SET -4)|2 Videos

Similar Questions

Explore conceptually related problems

|(a^(2)+x,ab,ac),(ab,b^(2)+x,bc),(ac,bc,c^(2)+x)|

|(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1)|=

If A=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))], B=[(0,c,-b),(-c,0,a),(b,-a,0)] then AB=

If A=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))] and a^(2)+b^(2)+c^(2)=1 , then A^(2)=

Find the product [{:(0,c,-b),(-c,0,a),(n,-a,0):}][{:(a^2,ab,ac),(ab,b^2,bc),(ac,bc,c^2):}]

|(0,c,b),(-c,0,a),(b,a,0)|-|(b^(2)+c^(2),ab,ac),(ab,c^(2)+a^(2),bc),(ac,bc,a^(2)+b^(2))|=

|(1,a,a^(2)+bc),(1,b,b^(2)+ac),(1,c,c^(2)+ab)|=k(a-b),(b-c), (c-a) then k =